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Abstract -- Reference is made to discrete (finite element) structural models formulated in terms of
generalized variables. The constitutive laws adopted are clastic—-plastic. nonlinear-hardening with
internal variables and generally nonassociative. The notion of reduced domain is employed as a
generalization of a similar concept introduced in earlier developments of shakedown theory. On
this basis. a unified theory is presented. which encompasses : necessary and, separately, sufficient
conditions for shakedown by a static approach as a further generalization of classical Melan’s
theorem : bounds on various post-shakedown quantities ; sufficient and necessary shakedown criteria
by a kinematic approach as a further extension of Neal-Symonds—Koiter theorem. By suitable
specializations and relaxations of the achievable results, the criteria and bounding inequalities
established here are formulated as mathematical programming problems in view of numerical
applications.

1. INTRODUCTION

Since its origin in the pioneering work of Bleich and Melan which preceded and anticipated
rigid-plastic limit analysis, shakedown theory represents a prototype of simplified meth-
odology : in the sense that laborious time-stepping inelastic analyses are avoided in assessing
whether plastic deformations will or will not eventually cease to grow in a structure subjected
to variable loads unboundedly repeated in time [e.g. see Koiter (1960) and Martin (1975)].
At an early stage the development of shakedown (SD) theory aimed at relaxing the original
limitations to infinitesimal deformations. quasi-static processes and perfectly-plastic associ-
ative material models. The earliest extensions concerned dynamics (Ceradini, 1969, 1980 ;
Corradi and Maier. 1973. 1974) ; nonassociative plasticity (Maier, 1969) ; hardening behav-
iour (Ponter. 1975a). also combined with geometric effects (Maier, 1973a), and were mostly
based on piece-wise-linear constitutive models (multiple linearized vield functions) in order
to exploit the potentialities of linear programming theories and methods. then fashionable
topics in applied mathematics [e.g. Corradi and Zavelani (1974)].

Classical shakedown analysis and its extensions have soon been supplemented by other
simplified methods in the above sense. namely by procedures intended to provide further
information in terms of bounds (primarily upper bounds) on history-dependent quantities
(Ponter, 1972 : Maier. 1973b: Maier and Vitiello, 1974).

Meaningful later contributions are partly surveyed, e.g. in Gokhfeld and Cherniavsky
(1980), Konig and Maier (1981) and Koénig, (1987) and are only mentioned here through
some representative references. These contributions: provided unified frameworks for both
shakedown criteria and bounds (Débordes and Nayroles, 1976 ; Polizzotto. 1982) ; covered
the effects of large deformations (Siemaszko and Kénig. 1985 Weichert, 1986 ; Maier et
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al.. 1993 Stumpf. 1993) ; proposed new bounding techniques (Capurso. 1979 ; Polizzotto,
1984a.b ; Martin. 1985 : Polizzotto. 1986) : developed computational approaches to shake-
down analysis (Kénig and Kleiber. 1978 : Morelle and Nguyen, 1983 Kleiber and Konig,
1984 Carter and Ponter, 1986; Genna. 1988: Pycko and Mréz. 1992; Pycko, 1994);
applied the theory to real-life situations and compared it to experiments (Tin-Loi, 1980;
Alwis and Grundy. 1985; Lears ¢t «l.. 1985: Tin-Loi and Vimonsatit, 1993); finally,
engineering motivations fostered generalizations to more and more versatile and realistic
material models (Maier, 1987 : Maier and Novati. 1990a, b: Comi and Corigliano, 1991
Polizzotto e al.. 1991 ; Stein et /.. 1992 ; Nayroles and Weichert, 1993). The last trend has
also been suggested by particular but meaningful applications of SD theory to soil-structure
interaction in offshore engineering (Pande, 1982 Haldar ¢f a/., 1990) and to steel structures
subjected to thermal cycles in nuclear engineering (Morelle and Fonder, 1987 ; Save er al.,
1991 : White, 1992).

The last mentioned trend is further pursued in this paper focusing on nonassociative
elastoplastic models. The inelastic behaviour of technically important materials with
internal friction (such as concrete and geomaterials), to many engineering purposes, admits
a phenomenological description in terms of elastic—plastic constitutive laws only provided
these laws are nonassociative. In fact, e.g. for concrete, the normality rule applied to
Drucker Prager’s popular yield criterion would entail dilatancy grossly in excess with
respect 1o the experimental evidence. As pointed out in a parallel paper by Pycko and Maier
(in press). nonlinear hardening constitutive models now widely used for metals exhibit
normality in the stress and strain spaces superposed, but not in the augmented spaces
superposed (i.e. of measurable and internal static and kinematic variables) and, hence,
require an ad hoc generalized shakedown theory.

The early generalization of the static (Melan’s) theorem to nonassociative perfect
plasticity (Maier, 1969), was centered on the notion of reduced elustic domain. A similar
notion. under the more suggestive name of elusiic sanctuary has been re-proposed very
recently in a less restrictive constitutive context (Nayroles and Weichert, 1993) and, to limit
analysis purposes. had been used earlier by Radenkovic (1961), De Josselin de Jong (1964),
Palmer (1966) and Sacchi and Save (1968).

The contributions gathered in the present paper, though restricted to the small defor-
mation range. are intended to provide a systematic extension to nonassociative plasticity
of most of the elustic shakedown and bounding theory at its present (1993) stage of
development.

Therefore. three preliminary choices have been made to characterize the present study :
(a) dynamic context: (b) finite element semidiscretization in generalized variables; (¢)
mternal variables multimode elastoplastic constitutive laws ; (d) unifying theoretical frame-
work encompassing as special cases a number of available results. Cyclic plasticity or plastic
shakedown is regarded here as a case of lack of SD (inadaptation) and is not dealt with per
se. A comprehensive theory of plastic shakedown was developed recently by Polizzotto
(1993).

The chosen setting is intended to help reconciling the conflicting requirements of
general theoretical foundations and practical analysis methodology. In particular the pre-
sent contributions aim at narrowing the persistent gap between shakedown theory and its
potential applications to geodynamics and to seismic and offshore engineering, [e.g. see
Pande ¢t al. (1980), Aboustit and Reddy (1980) and Haldar ¢r «/. (1990)] ; in fact, in these
areas both inertial effects and nonassociativity may play an important role.

The contents of the paper can be outlined as follows: Section 2 is devoted to a
description of the two main unifying ingredients of the subsequent developments : discrete
structural models centered on the notion of generalized variables; material models with
internal variables and with yield functions and plastic potentials, which are generally
different but both subjected to the restrictions which are felt to be necessary for a com-
prehensive shakedown theory. The concept of generalized variables, though stemming from
Prager’s work. entails various advantages in multifield (mixed) finite element modeling of
elastoplastic solids [c.g. see Corradi (1978), Simo er a/. (1989), Comi et al. (1992) and Comi
and Perego (in press)]. but in addition provides here the unifying benefit of preserving
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essential features of the continuum tensorial description. The constitutive laws are for-
mulated in generalized variables for materials (Gauss points), finite elements or structural
components alike, and expressed in pairs of work-related internal and measurable or
external variables (one extensive or kinematic, the other inrensive or static), according to the
general thermodynamically based pattern which is now popular in the plasticity literature
(Halphen and Nguyen. 1975 ; Lemaitre and Chaboche, 1990).

Section 3 establishes an inequality which is called central or fundamental, inasmuch
both shakedown theorems by the static approach and bounds are derived from it in
the subsequent two Sections. Use is made of fictitious linear elastodynamic responses (a
traditional notion in SD theory) and of the unifying concept of perturbation variables
proposed by Polizzotto (1982).

Section 4 expounds results established here by the static upproach, in the spirit of the
Bleich—Melan theorem. as a further extension of Ceradini’s theorem on dynamic shakedown
[e.g. see Ceradini (1969), Maier (1970), Maier and Novati (1990b) and Comi and Corigliano
(1991)]. A parallel generalization in the quasi-static range with reference to specific material
models (Chaboche model for metals and Resende Martin’s model for geomaterials) is
presented in a companion paper (Pycko and Maier. in press).

Various history-dependent, post-shakedown quantities of practical interest are shown
in Section 5 to be bounded from above by means of inequalities derived from the fun-
damental one, simply by making special selections of the perturbation variables. Bounds
may turn out to be loose : some prospects of their optimization are briefly discussed.

Section 6 presents results arrived at here by a kinematic approach. in the spirit of Neal-
Symonds’ and Koiter's theorem (Symonds and Neal, 1951 Koiter, 1956). as further
generalization of Corradi-Maier theorem on dynamic shakedown (Corradi and Maier,
1973, 1974 ; Comi and Corigliano, 1991 : Polizzotto er al., 1993).

In Sections 4 and S various contributions are presented through suitable specializations
and/or relaxations of constraints, in order to formulate procedures of computational
interest, mostly by (nonlinear) mathematical programming. The simplifications achievable
in the practically important case of periodic excitation are pointed out, similar to those
noted earlier in narrower contexts (Gavarini, 1969 ; Maier and Novati, 1990b).

Finally in Section 7 the main findings are synthesized with supplementary comments.

2. FORMULATION OF PROBLEM

2.1. Governing relations in generalized variables

The inelastic, small deformation dynamic response of a solid or structure occupying
volume Q and modeled in space as an aggregate of finite elements or structural components
can be governed by (ordinary, nonlinear) differential equations of the following kind :

e(1) = Cu(r) (1)
Mii(r) + Va(r)+ C'a(r) = P(1) (2)
6 =6(8:8(1), 1< 1)) (3)
associated to the initial conditions:
u(0) = u, u) =nu,. (4)

The symbology used above is specified as follows: u, ¢ and 6 are vectors of the
generalized variables which govern the (unknown) displacements, strains and stresses,
respectively. through the relevant, element-wise chosen interpolations ; P denotes the load
vector equivalent to the given external forces: C is the geometric compatibility matrix ; M
and V represent the (symmetric. consistent) matrices of inertia and viscous damping. the
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former being assumed positive-definite, the latter positive-semidefinite ; finally, dots mark
derivatives with respect to time 7 (or 7). Note that the linear damping defined by matrix V
expresses structural (e.g. frictional) effects and not material viscosity. V can be assumed as
linear combination of the mass and the elastic stiffness matrices.

Nonlinearity is implied only by the elastic—plastic (inviscid) constitutive law, which
will be explicitly formulated later in an internal variable format.

The variables used in the semidiscretization leading to eqns (1)—(4) are called gen-
eralized in Prager’s sense when they are endowed of the following features : (i) variables are
introduced in pairs of conjugate quantities, each pair containing a static field, say § (x) (or
vector s) and a kinematic field, say k (x) (or vector k), x being space coordinates; (ii)
denoting by N, and N, shape matrices of interpolation functions, such that:

$(x) = N.(x)s  k(x) = N (x)k %)

the (inverse) relations hold true:

s =J N/ (x)$(x)dQ  k =J NI (x)k(x) dQ. (6)
Q

Q

The meaning and implications of the recourse to generalized variables in the con-
struction of a semidiscrete structural model can be elucidated through the following
remarks.

(a) A necessary and sufficient condition for eqns (6) to hold as a consequence of inter-
polations (5) is provided by the orthogonality condition of the conjugate interpolation
functions:

~

ﬁ NT(x)N (x)dQ = L. )

v

(b) A crucial implication of egs. (6) is the conservation of the scalar product, namely, the
relation :

~

$Tx)k(x)dQ =s"k forany s, k. (8)

Jo

(c) In order to satisty relation (7), a simple way is to choose first interpolation functions
of one field, e.g. Ny(x). and then to determine the interpolation functions of the conjugate
one, N,(x) through the relationship:

"

1
Ni(x) = (J NI\T(X)Nk(x)dQ> N (x). (&)

(d) Eqgns (5)—(9) can be written for each element Q° (using an element index e on all
symbols). As an alternative. here preferred, each interpolation can be defined over the
whole solid or structure (i.e. with xe (), being understood that it vanishes outside its
support, so that vectors s and k concern the assemblage of elements.

(¢) The above definitions and remarks apply to the following kinematic (or extensive)
variables: strains (total ¢, elastic e and plastic p), kinematic internal variables g, plastic
multipliers 4. The conjugate static (or intensive) variables are, respectively : stresses o, static
internal variables ¥, yield functions ¢ (and plastic potentials ®). The pairs (1, %) and (4, @)
will be defined below (Section 2.2) by making the constitutive law (3) explicit. Another pair
is formed by displacements u and loads P.
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(f) Special cases of consistent modeling by generalized variables are discussed elsewhere
(Comi and Perego, in press). In order to fix ideas, one can refer here, e.g. to a 3D solid
discretized into constant-strain, four node, tetrahedral described in terms of natural element
variables (¢ = edge elongations ; ¢ = equivalent self equilibrated edge forces).

Imposed (e.g. thermal) strains might be introduced in the constitutive law (3) but will
not be considered here for brevity. Similarly, possible imposed displacements will be
assumed zero (they may always be simulated by suitable strains imposed on fictitious
elements added along on the kinematically constrained variables).

2.2. Elastic-plastic nonassociative constitutive laws with internal variables

The above adopted semidiscretization based on the notion of generalized variables
implies, as a first formal advantage, that constitutive laws preserve a meaning and all
essential features in passing from material (i.e. homogeneous specimen ; or Gauss point) to
individual finite elements and to assembled aggregates of finite elements. We will profit
from this circumstance by formulating the envisaged class of material models directly in
terms of the generalized strain and stress vectors ¢ and ¢ which already intervened in eqns
(H—(4).

The Helmholtz's fiee energy is assumed to be the sum of two addends : the recoverable
elastic strain energy W, expressed by a positive definite quadratic form of the elastic strains
e the srored elastic energy W,, locked in the material by the microscale rearrangements
globally described by the kinematic internal variables n and expressed as a convex, differ-
entiable function of them:

Y(e.n) = ,e"Ee+ ¥ (n). (10)

where E represents the (block-diagonal. symmetric, positive definite) matrix of the elastic
stiffnesses.

The static counterparts ¢ and y are related to the kinematic variables e and #, respec-
tively, as gradients of the potential ¥, i.e. through the state equations:

Y 2 S O
6=—=EFEe, y= - =— (11)
’e cn ‘n

The former equation is Hooke's law, the latter defines the (generally nonlinear) hardening
rule. The plastic potentials, collected in vector ®(s.y). are assumed to be convex and
differentiable functions of the static variables o and y. If vector 4 gathers the plastic
multiplier rates measuring the yielding processes in all modes of all elements, the flow
rules which govern the consequent evolution of plastic strains p and kinematic internal
generalized variables n, are defined by :

o, o,
p='o-d, B=— —h. iz0. (12)
‘o L

The mechanical dissipation has to comply with the thermodynamical sign-constraint :
D=c"e—WV=06"c—(c"é+y' i) =0 p—y'7 = 0. (13)

where the assumed additivity of elastic e and plastic p strains has been used.

The yield functions gathered in vector ¢ (o.y) are for all modes assumed convex
differentiable functions of the static variables. so that they define, locally for all clements
separately, convex fixed yield domains in the spaces of element generalized stresses and
static internal variables (called henceforth augmented stress spaces) :
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@lo.7) < 0. (14)

The loading-unloading conditions (typical of plastic models centered on the concept of the
yield surface) are expressed by the usual complementarity relationship, which holds also
component wise due to the sign-constraints on the two vectors involved :

@'h=0. (15)

Since in the above constitutive law the plastic potentials play a role only through their
gradients, the indeterminate additive constants will henceforth be removed by setting, as a
normalization. that they are equal in the origin to the yield functions.

[t is important to notice that the theoretical results presented in the subsequent sections
are derived under the hypothesis that neither saturation hardening nor bounding surfaces
are considered in the class of constitutive models here discussed. Generalization of shake-
down conditions, in particular for the kinematic approach (see Section 6) for constitutive
laws in which saturation hardening and bounding surfaces are taken into account are
presented in a parallel paper (Corigliano ¢t al.. in press).

2.3. Restrictions on the nonassociativity.

Focus is herein on constitutive models which entail plastic potentials @ different from
the yield functions ¢ pertaining to the same yield modes.

This difference (i.e. nonassociativity, or lack of normality} is strongly suggested by the
experimentally observed behaviour of many enginecring materials as the main manifestation
of their internal friction. as noted in Section 1. It is well known that nonassociativity has
far-reaching consequences in plasticity theory. First of all it generally invalidates Drucker’s
classical postulate (Drucker, 1964). This is often given the formulation :

Az

[6()—a’]"dpit) = 0. Ve such that (') <0. (16)

[ts main particular implications read :
[e(t) ~6']"p(1) = 0 Ve such that ¢(e’) <0: 6'¢ >0,V (17)

Of eqns (17). the former represents Hill's maximum work principle. The latter means
stability according to the second-order work statical criterion, and was shown (Maier and
Hueckel. 1979). to be violated for all paths & belonging to a cone whenever the hardening
modulus / is below a non-negative threshold 4. In perfect plasticity, i.e. for # = 0, non-
associativity implies /1. > 0 and. hence. lack of stability according to the criterion (17).

In order to later establish shakedown criteria. the following hypothesis will be used in
combination with the constitutive relations (10)-—-(15).

(®—B)'J > 0. (18)

Here @ is the vector of plastic potentials (see eqn (12) ; 4 is the vector of plastic multipliers.
The vector of constants B is defined (and numerically evaluated) as follows :

B, =min®,(0.y%) (19a)
s

subject to:

@, a.0)=0. o¢e.9)<0. VB +#u (19b)

Problem (19) amounts to minimizing the x-th plastic potential @, in the augmented space
(6.%) over the corresponding x-th yield mode. namely over the portion of the yield surface
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decreasing

Fig. |. Generation of the z-th mode of the reduced domain schematically illustrated in the augmented
space a. y - shaded region out of reduced domain.

defined by the equation ¢,(6.7%) = 0 (see Fig. 1). The constants B, generated by (locally)
solving problems (19) for all %, are collected in vector B and give rise to the inequality :

®(s.7) -B < 0. (20)

The convex domain defined by (20) will be referred o as reduced domain. 1f B is defined as
above, relation (18) is certainly satistied becausc. whenever 4 > 0, the corresponding point
(8. %) in the space (a. %) belongs to the yield surface and therefore is outside, or at most on,
the boundary of the reduced domain [i.e. ®(6.%) — B = 0]. The definition of the vector of
constants B in the form of a constrained optimization problem (19). of the reduced domain
and related notions are discussed and illustrated by special cases in (Pycko and Maier, in
press).

Inequality (18) is seen to be complied with it the difference between the plastic potentials
and the yield functions is bounded from below over the yield domain. i.e.

®—¢>B @1

Inequality (18) can thus casily be proved from (21) through equation (15). As a special
case associative behaviour, i.e. ® = ¢. implies B = 0 in (18).

The existence of (finite) constants B and. hence, the validity of inequality (18) can be
regarded as a (weak) constitutive hypothesis additional to (10)—(15).

2.4. Shakedown and related concepts

Like in classical plasticity theory, shakedown (or clustic shakedown or adaptation or
stabilization) will be said to occur in a dynamical system modeled as described in what
precedes, if a suitable overall cumulative (non decreasing) measure of the yielding process
is bounded above in time. Such measure is identified here in the energy dissipated throughout
the structural model. In other terms in view of eqn (13). the shakedown criterion adopted
reads (7 being integration variable):

~

Jim \'}[)(1) = (a'p—fx'i])dr% < 7. (22)

i

Inadaptation. ic. the event contrary to shakedown. (D(r) -» x) occurs either with
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unbounded displacements (Jlu]| — o : incremental collapse or ratchetting) or with bounded
displacements and, hence, bounded plastic strains (alternating plasticity).

The next two Sections are intended to establish a priori criteria for SD or lack thereof.
A priori means here susceptible to be used on the basis of purely linear-elastic analysis of a
suitably defined fictitious process. thus avoiding laborious inelastic time-stepping solutions.
In the same sense a priori upper bounds will also be proven on post-shakedown, history-
dependent quantities.

3. FICTITIOUS ELASTIC PROCESSES AND CENTRAL INEQUALITY

3.1. Linear-elastic auxiliary analyses
In view of subsequent developments, let us consider the following problems concerning
the structural model of Section 2 now supposed to be uncapable of any plastic yielding.

(A) Elasto-dynamic response (superscript E) to the given external actions P(r) with homo-
geneous initial conditions. The governing equations are:

MG (/) + Vit (1) + Ca" (1) = P(£) (23a)

e =Cut. o' =Eet. u(0)=0. uf(0)=0. (23b)

(B) Free vibration (superscript F) owing to suitably chosen, generally fictitious (capped
symbols) initial conditions in the absence of external loads:

M () + Vi (1) +C"6" (1) =0 (24a)
& =Ca". ¢ =E&:; W0 =a,. 6(0) =i, (24b)

(C) Elastostatic selfstress response p to a time-independent plastic strain distribution p°.
The relevant governing equations

C'p=0. 2=Ci". p=E@E@p) (25)
can be solved explicitly, whenever convenient, to give:
p=12Zp . whereZ = EC(C'EC) 'C'E—E. (26)

Clearly. the solution to the elastodynamic problem (A) captures the loading history data,
and can be regarded henceforth as an input for subsequent inelastic analyses.

3.2. A fundamental inequality

The subsequent derivation of shakedown criteria and bounds can be carried out in a
concise way, if it is based on the following statement (Prop. 1), which per se does not exhibit
an explicit mechanical meaning (Polizzotto, 1982).

Consider a fictitious process (or comparison elastic response) consisting of the super-
position of the solutions to the linear problems A-C, of Section 3.1, eqns (23-25) and
denoted henceforth by a cap (without superscript) on the symbols of the relevant quantity,
e.g.

6(1) = 6" (1) +6" (1) +p. 27

Proposition 1. Fundamental inequality. Suppose by hypothesis that :
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D((1)+r)g. (F+V)s)+w <B. atanyr>1 (28)

for a certain finite time instant 7, for some parameters ¢. s. r. v, w, internal variables § and
1. self stresses p, (all time-independent) and, finally, for some fictitious initial conditions
giving rise to the free vibration stresses " (1).

Then (as a thesis proven below) the following inequality holds true:

. ”»

J [(e+1) pg— (3 +v) fs]dr— [ D(tydr+w' | Adt < gL(7)+sL(7). (29a)

Vi v

where
L.(1) = ;Au"MAia+:Ac'E 'Ac (29b)

L(n =¥ —P.)—(—)'q. (29¢)

In eqns (29) : 7 1s the dummy variable of time integration : A denotes the difference between
the actual structural response and the above defined fictitious process. cf. eqn (27): % is
conjugated with # through eqn (11b).

The time independent parameters ¢. s, r, v. w in eqns (28) and (29) have no physical
meaning but provide a convenient unified tool for the later generation of bounds. They can
be called gap or perturbation parameters (without any link with conventional perturbation
methods). The first and the second integral in eqn (29a) can be interpreted as a multi-
perturbed and the actual cumulative dissipated energy (cp. eqn 13), respectively.

Proof. Since in the actual process 4 > 0, inequality (28) implies :

wii< —(®—B) i (30)

In the hypothesis inequality (28) the argument (&, §) of the plastic potential ® can be
interpreted as perturbed fictitious stresses and static internal variables. namely :

N =(@(N+1g. T=F+v)s. ®=®E0).%). (31)

In view of the constitutive assumption (18), we can write :
—(®-B)'i<(®-B)'Ai—(®-B) i=(d-D)'L (32)

Because of the assumed convexity of the plastic potentials ® and making use of the flow
rule (12) we can write :

- . L 1 obT .
@-0)'iz@ o) i@ b= e G e (Y)
From (30), (32) and (33) it follows that:
wA<(e—&)"p——1'n (34)

By substituting into it eqns (31a.b) and integrating over the time interval [/, 7], inequality
(34) yields:
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i ~r
J [(6+1r)"pg—(x+v) fs]dr— ' (a'p—y'i)dr

+w! J idr < qJ (a—&)Tpdr—sJ -0 "wde. (33

Focusing now on the first term on the r.h.s. of eqn (35), we write the virtual work equation

(6—6) " [p+E '(6—6)] = —(i—0)"M-[i—i]—(u—0)" V- [a—i]. (36)

In fact, the factors in square brackets are easily recognized to form a set of compatible
kinematic quantities, while the factors which pre-multiply them turn out to satisfy the
dynamic equilibrium equations. Since the viscous damping matrix V is positive semidefinite,
without the relevant term eqn (36) becomes an inequality ; which after rearrangements can
be written in the form:

d
(6—6)'p< — a[{AaTE “'Ac+1Au" MAa]. (37)

As for the second term on the r.h.s. of eqn (35). recalling the definition of stored-energy
potential ¥, eqn (10), and the state equation (11b), account taken of the time-independence
of i (and ¥). it leads to the equality :

d ) T A
=% = gy [ =¥ — (n—#)"%). (38)

Let us now make use of the inequality (37) and of eqn (38) in the integrands on the r.h.s.
of inequality (35). Integrating in time and keeping in mind the definitions of L, (29b) and
L, (29c), this r.h.s. can be given the expression :

GULATY — L)+ s(LAT) — L (1)) (39)

and can be deprived of the addends L.(7) and L (¢) without jeopardizing inequality (35),
since the former addend is non-negative owing to the nature of matrices M and E and the
latter is so owing to the assumed convexity of the stored energy potential ¥, and to the fact
that § = ¢¥,/@y|,. Thus, the inequality (35) is seen to reduce to the inequality (29a), which
embodies the thesis to prove. (g.e.d.)

4. SHAKEDOWN ANALYSIS BY A STATIC APPROACH

4.1. Shakedown theorems

Static approach means here that constant static variables, namely selfstresses p (like
in Melan’s theorem) and internal variables ¥ (which do not exist in perfect plasticity) play
the role of trial parameters, besides fictitious initial condition d,, 6,. Antecedents can be
found in Melan (1938). and, as for dynamics, in Ceradini (1969) for perfect plasticity and
Maier (1970) for piece-wise-linear hardening plasticity.

Let us specialize the choice of the perturbation parameters which intervene in the
hypothesis (28). by setting the vectors to zero and taking scalars ¢ and s equal :

r=0v=0w=0 g=s5s=w>1 (40)

Thus the fundamental inequality (29a). becomes :
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prodr< LD+ L) (41)

v

Since the r.h.s. is a nonnegative finite quantity independent of the current time ¢, in view of
the definition (22) of shakedown, inequality (41) means that the quantity (D(t) — D(7)) and,
hence. since 7 is a fixed finite time. the overall cumulative dissipated energy D(¢) is bounded
above in time.

By recovering now the hypothesis (28) specialized in accordance with assumption (40),
the conclusion attained can be stated as follows.

Proposition 2. Sufficient condition for shakedown. The semidiscretized (space-modeled)
structure will shakedown under the given loading history P (¢) and initial conditions uy, Ui,
if there exist a time 7. time-independent static internal variables §. a scalar @ > 1 and a
fictitious process 6(r). see eqn (27). (i.e. selfstresses p and fictitious initial conditions Gy, t,).
such that:

D(wé.ny) <B. YVizi, (42)
where B is the vector of constants which appears in the constitutive relationship (18).

Like 1n the classical theory. a supplementary conclusion flows from the notion that
shakedown means that plastic yiclding does not occur after a finite time 7. Through a direct
customary path of reasoning. not duplicated here for brevity [e.g. see Maier and Novati
(1990a)] the following statement is easily established.

Proposition 3. Necessary condition for shakedown. 1f the structure shakes down under the
given external actions. then there exist a time 7. time-independent static internal variables
%. and a fictitious process &(f). such that:

WV

063 <0, V=i (43)

Adopt again the special selection (40) of the perturbation variables but with
g =5 = = 1. The same path of reasoning followed in the proof of Prop. 1, Section 3.2,
(except the time integration) leads first to the specialization of eqn (34), namely to:

D=0 (44)

whence, through eqns (37). (38) and (29¢). one arrives at the inequality :
d
iy [LA¢'E 'Ac+iAu'MAa+L (1] <O0. (45)

Note that, by means of a Taylor series expansion around #. the expression (29¢) of the
stored energy function .. becomes:

(
L)y =tp—p)'

n

-

2

: 31 (7)(n — i)+ higher order terms. (46)
L]

-~

The Hessian matrix in eqn (46) is positive semidefinite because of the assumed convexity
of the stored energy W.. It becomes constant for linear hardening (hardening matrix
A = A"), when the higher order terms in eqn (46) identically vanish. In this case if A is
nonsingular, L.+ L. can be assumed as an energy norm of the difference between the actual
and the fictitious process. As a conclusion. inequality (45) can be interpreted by the
following statement.
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Proposition 4. Non-expansivity property. If the same hypothesis of Prop. 2, inequality (42),
holds with w = 1, then the distance between the actual and the fictitious process measured
by the energy norm L.+ L,, does not increase in time.

4.2. Bases of analysis procedures and remarks

The above statements, especially 2 and 3, play a crucial role as a basis for analysis
procedures and, hence, are worth being commented on in some detail.

Let « = 0 be the load factor,i.e. a common multiplier of all external actions. Shakedown
analysis primarily seeks the safetry factor with respect to inadaptation, or shakedown limit
a,, namely the critical threshold «, below which the system still shakes down and above
which it does not. The following bounding statements emanate from Props 2 and 3,
respectively.

Proposition 5. Lower bound on «,. The shakedown limit «, is bounded from below by the
number % such that:

.= a, = max {a}, subjectto: ®(xe"()+6"(+p,}) <B, Vi=1i 47
N
Qi G

Proposition 6. Upper bound on «,. The shakedown limit «, is bounded from above by the
number &« such that:

. <o = max {2}, subjectto: e(xe"(1)+6"+p,3) <0, Vi1 (48)

PNNE

[N

In both Propositions 5 and 6, the load factor may or may not be regarded as a multiplier
of p, % and of the fictitious initial conditions (and, hence, of their linear effects ), in view
of the role of these quantities in the shakedown criteria 2 and 3. The latter alternative was
preferred above in view of the computational methods discussed later. This very same
remark, supplemented by the weak constitutive hypothesis that each plastic potential
monotonically increases with an argument multiplier, justifies the fact that the scalar w in
(42) does not show up in (47). The transition from the strict inequality w > 1 to the loose
inequality in (47b), in view of applications, should rigorously be accompanied by redefining
%, as the value separating the set of load factors (x < %,) for which shakedown is ensured
from the set of those (x > «,) for which it is ruled out and by replacing max by sup in (47a).

The following remarks are intended as subsequent steps towards procedures of prac-
tical interest in applications.

(a) Suboprimizations. Let the initial conditions @, fiy, and the instant 7 be chosen a priori
instead of being dealt with as optimization variables. With these additional constraints,
maximization problems (47) and (48) yield suboptimal values and reduce to much simpler
problems, i.e. respectively, to:

%, = = B (@, . ) = max {a} subject to (47b) (49)
ENNE

o, < af = B (8.4, ) = max {a} subject to (48b). (50)
LNNE

Clearly, the solution of (49) is potentially more useful than that of (50), which provides
unconservative information on a,.

Natural choices of the fictitious initial conditions are: (i) homogeneous conditions
(i, = 0,14, = 0) which imply 6" (z) = 0 and eliminate the elastodynamic problem B of Section
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3.1; (ii) actual conditions (W, = u,. @, = u,). which identify the fictitious process 6" | 6"
with the elastodynamic response to the complete set of external actions.
However, in the special case of periodic loads P(7), a different choice becomes definitely
more attractive as shown below.

(b) Periodic excitation. The lact that the actual initial conditions have no influence on
shakedown (understood as boundedness in time of the dissipated energy) is physically well
expected and quite apparent from the dynamic shakedown theory both in the classical and
in the present context (see criteria of Section 4.1). In many engineering situations, the
external actions are periodic and the structural response which practically matters consists
of steady state periodic motion unaffected by initial conditions (the initial transient affected
by the initial conditions. which are often uncertain. is soon or later damped off). Peculiar
nonlinearities, such as geometric or;and physical (constitutive) instabilities, may cause non
periodic chaotic responses [e.g. see Maier and Perego (1992)]. For linear elastodynamic
responses, steady state periodic motion rigorously occurs asymptotically in time and can
be uniquely determined under the following hypotheses (7 being a finite excitation period) :

Pu+T)y=P@u). a'Va>0. Va#0 (51)

Then, one can easily compute the special fictitious initial conditions such that, if actually
imposed at ¢ = 0, they would make the asymptotic. steady state periodic motion to start
from ¢ = O (transient-suppressing conditions. say uj.ih). From this notion a simple path of
reasoning adopted in the classical context [e.g. see Corradi and Maier (1973) and Maier
and Novati (1990a)] and not duplicated here for brevity, leads to the following practically
important statement.

Proposition 7. Periodic excitation. Under periodic loading. eqns (51a), the transient sup-
pressing conditions and the time origin are optimal in both maximizations (47) and (48).

In other terms. setting 7 = 0 and i, = u.a, = u}, the optimizations (47) and (48) are
to be performed in «. p. 1 alone: 1.e. with reference to problems (49) and (50) .

B oual.0) =2 : f (ul.ah.0) =, (52)

(c) Time remorul. As another step towards applications. without loss of generality,
time can be eliminated as follows from the preceding optimization problems.

Starting form the elastodynamics stress history ¢"(¢) for ¢ > 7 preliminarly obtained
by solving the lincar problem (A). Section 3.1 [with data P (1), u§ = 0, 0 = 0], a minimum
convex hull H; containing a¥ (1) for 1 > i locally. in the stress space of each (j-th) element
or Gauss point can be defined.

The free vibration responsc 6'(7) either does not intervene (with homogeneous or
transient-suppressing fictitious initial conditions) or can be ignored by choosing 7 sufficiently
large in the suboptimizations. In the most general case. ¢'(7) can be dealt with as above
specified for ¢"(¢). like a term added to it when the fictitious initial conditions are not
considered as optimization variables.

Let T, be the boundary of H, (or elustic envelope). Thus, because of the assumed
convexity of both plastic potentials and vield functions (Section 2.2), all the preceding
maximization problems can be transformed into relevant suboptimization problems by
enforcing their constraints overe' € [ (ore6' +6' € ). I being the union of all T (" = U,T'),
instead of over all 7 > /.

Let I'*denote the ser of vertices of a convex polvhedron which contains the minimum
convex hull A, in the relevant (j-th) stress space. Then all the preceding maximization
problems, including the suboptimization just mentioned are transformed into relevant
suboptimizations by enforcing their constraints over " e I'* (or ¢ +6" e I'*), I'* being the
union of all I'* The noteworthy computational gain now achieved is that the new problems
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are mathematical programming problems (with discrete numbers of both variables and
constraints).

5. BOUNDS ON HISTORY-DEPENDENT QUANTITIES

5.1. Bounding inequalities

At present, the shakedown theory usually concerns both the original problem of
determining the safety factor with respect to inadaptation and the related problem of
achieving information, primarily upper bounds, on quantities which depend on the yielding
history, in both cases by skipping the step by step solutions. Pioneering work on bounds in
inelastic structural analysis was done by Martin (1964) and Ponter (1972, 1975b). The
original distinction between direct and indirect bounds [e.g. see Konig and Maier (1981)]
is superseded by unifying approaches [cf. Polizzotto (1982) and Maier and Novati (1990a)]
of the kind adopted here. Accordingly, bounding properties are stated below first, and
subsequently, in a single proof, they will be shown to flow from the fundamental inequality
of Section 3.2. For convenience, it is recalled here from eqns (29b,c) and, for the special
case of linear hardening, from (46), the meaning of the elastic strain energy L.(0) and of
the stored energy L(0), associated with the difference between actual and fictitious processes
at the time origin ¢ = 0 (subscript 0 for time-dependent quantities) :

L.(0) = %(0'0 _&O)TE o (6)—6y) +£(“1) *l;ln)TM(l-l(x ‘ﬁn)
= 1y — ) "M, — i) +1(6, —65) ' E" (6, —6) —p"Zp— (6, —65)'E ' Zp  (53a)
L(0) =Y. (no) =) —(no—0)' 1 = ;('Iu — i) Ay —1). (53b)
The second expression above given to the function L.(0) can be obtained using the definition
of the fictitious stress response &(f) [eqn (27)], the fact that 65(0) = 0 [eqns (23b), and eqns
(26a,b)] which relate the self stresses p to plastic strains p.
Often it is reasonable to assume that no plastic deformations exist at # = 0. Then in
view of eqns (1) and (11): , = 0 (and, hence, ¥.(0) = 0); 6, = Ee, = ECu,. In this case,

when the fictitious initial conditions are assumed to be coincident with the actual initial
conditions, the r.h.s. of (53a) reduces to %f)TE 'p= —éf)TZf).

Proposition 8. Bound on linear functions of i. A linear combination with coefficients w > 0
of the cumulative plastic multipliers 4(¢) which measures the yielding of the available modes
up to the time instant 7 > 0, admits the following upper bound:

wIA(T) < L(0)+ L (0)+w'A(0) (54a)

if: ®(a(1). %) <B—w,over0 <t < 7. (54b)

Proposition 9. Bound on linear functions of p. A linear combination, with coefficients r, of

the plastic deformations p developed up to an instant 7, is bounded above by the inequality :

rp(7) < Lo(0)+ L.(0)+rp(0) (55a)

if: ®E(n+r.3) <B,over0 << (55b)

Proposition 10. Bound on linear functions of 3. A linear combination, with coeflicients v, of
the kinematic internal variables 5 at instant 7 is bounded above by :

—vIn(7) < L(0)+ L,(0)—v'n(0) (56a)

if:®@(n. F+vI<B. overO0<r<1. (56b)
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Proposition | 1. Bound on plastic work. The plastic work performed in the whole structural
model up to the time 7 admits the bound:

£y

/

1
o'pdr < gl O0) + L) (5Ta)

ifig>1, Oge(t).3) <B. overO0< <17, (57b)

Proposition 12. Bound on energy ¥, The energy W, () stored in the whole structure up to
time 7 (because of rearrangements at the microscale represented by the kinematic internal
variables ) admits the bound:

~

v |
Yy = | x'pdr < (=) [L.(0) +5L(0)] (58a)

0<s< 1. ®@0,s7) <B, over0<r<i (58b)

Proposition 13. Bounds on residual displacements. Residual displacements u” at time 7 are
the displacements which would define the deformed configuration if the actual plastic
strains p at time 7 were imposed as initial strains, statically on the structure. A linear
combination with coefficients P (dummy loads) of residual displacements at time 7, denoting
by & the elastostatic stress response to dumnir loads P. is bounded above by :

P'un(7) < L(0)+ L (0)+5"p(0) (59a)

i ®6(n+a.3) <B. over0<1 <1 (59b)

Proofs. All the above statements are corollaries of Prop. 1. Section 3.2. In fact, they can be
obtained from it by setting / = 0 and choosing the perturbation variables so that, in the
fundamental inequality (29a). the quantity to bound be isolated and related only to a
function of available (and, hence. known) trial quantities. The trial quantities p, ¥, 9, and
i, are constrained by the constitutive inequality (28) specialized in turn to the conditions
(54b)-(59b) under which the upper bounds (54a)-(59a). respectively, are valid.

Specifically. the suitable choices of the perturbation variables are easily seen to be as
follows:

q s r v w
Prop § 1 | 0 0 =0
Prop 9 I 1 #0 0 0
Prop 10 ] ] 0 #0 0
Prop 11 > 1 0 0 0
Prop 12 | >0, <1 0 0 0
Prop 13 1 } g 0 0

To prove Proposition 13 concerning residual displacements, it should be noticed that
if p(7) are the self stresses owing to p(7). the virtual work principle requires that:

Puwiiy=a'[p(h+E 'p(D]; (B'E "p(f) =0. (60)

Therefore. the linear combination of residual displacements (or work of dummy loads
for them) to be bounded equals the quantity &"p. on which the fundamental inequality
(29), with the above specified choice of perturbation variables, directly provides an upper
bound.
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5.2. Remarks on applications and bound optimizations

First of all it is worth noting again that plastic deformations can be reasonably ruled
out in the actual process at + = 0. This implies that 4(0) = 0, p(0) = 0 and (0) = 0 in eqns
(54). (55a), (56a) and (59a).

In applying Props 810 and 13. a bound on a single component (say the i-th) of the
relevant vector is likely to be of interest. Obviously, this is achieved by specializing the
linear combination to bound. namely by setting to zero all coefficients but one and to, say,
v, the coeflicient of the component in point. It is worth noting. however, that y, represents
an additional trial variable: in fact, setting 7, = 1 is a legitimate choice but not necessarily
the best one. Clearly the same can be said of a factor y applied to any chosen vector (r, v
or w) of linear combination coefficients.

Similarly. in Props 11 and 12 scalars ¢ and or s are additional trial parameters. The
available trial parameters already present in shakedown analysis p, %, Gy, @y, and the new
one 7y (or 7,) or ¢ and;or s, depending on the quantity of interest, may be used to improve
the bound by decreasing it. In fact. a bound may turn out to be much higher than the
relevant actual quantity: then the information provided. though conservative, is hardly
useful in practice. This motivates the optimizations (or suboptimizations) discussed below.

Consider, e.g. the upper bound (55). Prop. 9. on the j-th actual (generalized) plastic
strain component at time 7, p,(7). singled out from vector p(7) by setting r' = {0...0,r, =y,
0...0} and assuming p(0) = 0.

Then, according to Prop. 9, the optimal upper bound is provided by the solution of
the problem:

1
p, < p™ = min { [L0)+ L\(O)]} (61a)
cod
subjectto: 7 =0. ®' (HN+6"(N+p+r) <B. overO0< <7, (61b)

where L.(0) and L(0) are specified by the expressions (53a) and (53b).

Now let us compare the above minimization problem (61) to the maximization problem
(47) intended to optimize the lower bound on the safety factor with respect to inadaptation
according to Prop. 5: it is noticed that the constraints are basically the same ; the objective
functions are both convex, quadratic in (61) and linear in (47) (in the variables p, %).

The path of reasoning which led (47) to simpler suboptimizations and, finally, to a
mathematical programming format. was unaffected by the nature of the objective function,
and. hence, turns out to be applicable unaltered to simplify problem (61b) as well. For
brevity this path will not be followed again in details, but only the main stages are recalled
here for convenience: (a) suboptimizations by an a priori choice of the fictitious initial
conditions; (b) in the case of periodic excitation, the a priori choice of the transient
suppressing uf,. i) is optimal. in the sense that do not deteriorate the optimal value; (c)
time removal by recourse to minimum convex hulls I'; in the local stress spaces and reference
to polyhedra enclosing those T, in the same spaces in order to transform the problem in a
fully algebraic one.

6. SHAKEDOWN ANALYSIS BY A KINEMATIC APPROACH

6.1. Admissible vielding cveles

The approach to be developed herc is kinematic in the sense that it is based on suitably
defined, fictitious. plastic deformation processes. In classical perfect plasticity this notion
led to the theorem of Symonds and Neal (1951) and Koiter (1956), later shown to be dual
to Melan’s theorem through the duality formalism of mathematical programming (Maier,
1969) for piece-wise-linear yield condition. Its extension to dynamics was established by
Corradi and Maier (1973, 1974). Extensions 1o associative nonlinear hardening plasticity
have been presented in Comi and Corigliano (1991) and Polizzotto et al. (1991, 1993).
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In view of the further generalization to the present nonassociative plasticity context,
the notion of admissible cycle is preliminarly revisited below and defined in two different
ways.

(a) Admissible cycle of kind ¢ (in symbols f)‘,,, ﬁw) over the time interval [z,, t,] will label
henceforth a fictitious yielding process in which: (i) the flow rule is associated to the yield
functions ¢, i.e.

. L . do' . , )
pq')::f—q)‘ﬂ“ ﬁ(p: _ipﬁi»’q 120. (PSO, (PTA.:() (62)

o

and (ii) the following relations are satisfied (the former means compatibility of the cumu-
lative plastic strains developed along the cycle) :

i, o,
Ap, = p,(1)dr = CAu,,, Ajfj, = f n,(r)dt=0. (63)

Note that, as a consequence of eqns (62) and of the convexity of ¢ (Section 2), Hill’s
maximum principle holds for the relevant (fictitious) dissipation :

D(p,.4,) = &P, —iof, = 6*'p, —x*"H,. Ve* y* suchthat e(a* x*) <0. (64)
(b) Admissible cvele of kind ® (in symbols pq. #is) over the time interval [r,,7,] will denote

a fictitious yielding process such that: (i) the flow rule is associated to the plastic potential,
i.e.

(DT 0P, .
Po="" i fo=—‘—i. i20. ®<B, (®—B)Ti=0 (65)
co (7X
and (ii) the following equations hold :
Apy = J Po(n)di = CAlly, Afjp = J'ﬁw(z)dt =0. (66)

Similarly to (64) by virtue of (65) and of the convexity of @ (Section 2). the associated
dissipation is characterized by Hill’s maximum principle :

Dq»(l;’ow';lw) = &gl;‘cb —igflm = U*rﬁm—X*T';Iun Ya*,x* suchthat ®(e* x*) < B.
(67)

6.2. Inadaptation theorems
The word inadaptation means here the event contrary to shakedown, the lack thereof.

Proposition 14. Sufficient condition for inadaptation. The structure will not shakedown
under the given load history P(7) and initial conditions u,.u,, if there is an admissible
yielding cycle of kind ¢, say (p,. §,). starting at ¢, > 7, such that:

J ot () +6" (0] B (1) dr > j D(p,.i1,) dr (68)

1
1

for all 6*(¢), i.e. for any initial conditions i, G, and for all time instants 7.
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Proof. Suppose. by contradiction with the thesis, that shakedown occurs under the given
dynamic excitation P(z). Then, by virtue of Prop. 3. there exists some 7 and some fictitious
process with time independent %, p and initial conditions @,. &, (and, hence, 6 = " +6"+p)
such that (43) is satisfied. By identifying these 6 and % with ¢* and y* in the maximum
property (64) of an admissible cycle of kind ¢ and by integrating (64) over the time for
t, > i, we obtain the inequality

fY&' b2 di < | DG, dr. (69)

vy Vi

Owing to the peculiar features (63) of the admissible yiclding cycle and to the virtual work
principle :

J p'p,dr = pTAp, = p'CAR, =0 [ i, dr =0 (70)

Through eqns (70), inequality (69) becomes ;

f‘w*mw*m)"‘iﬂmdz < f‘D(m.ﬁm)dr (71)

v iy v

which holds for any admissible cycle of kind ¢ with ¢, = 7 and for the particular values 6",
f which derive from the shakedown necessary condition.

Inequality (71) is in contradiction with the hypothesis expressed by inequality (68).
which holds for at least one admissible cycle of kind ¢ and for any 6'. 7. (q.e.d.)

Proposition 5. Necessary condition for inadaptation. If the structure does not shakedown
under the given loading history P(r) and initial conditions wu,, u,. then there is some
admissible yielding cycle of kind @, say (Pg. Hq). starting at 7, > 7. such that:

J (et +6" (D Patndr > | D(Panije) dt (72)

o

for all 6" (1), i.e. for any initial conditions @,. . for any time instant / and scalar variable
> 1.

Proposition 15 can be restated. equivalently through formal logic, as a sufficient
condition for shakedown in the way which follows. Note in passing that, similarly, Prop.
14 might be reformulated as a necessary condition for shakedown.

Proposition 16. Sufficient condition for shakedown. Shakedown will occur in the structure
under the given loading history P(7) and initial conditions u,, ,, if there exist a fictitious
free vibration response 6", a time instant 7, a scalar variable & > 1. such that:

s ~

‘.:J 7 [Ut(r)—’-&' ([)]I‘b(l)“) d[ S J \ D(ll)dn':]tlx)dl (73)

for all admissible yielding cycles of kind ® starting at 7, > 7.

Proof. 1t 1s proved below that condition (73) is a sufficient condition for SD by showing
that the safety factor %, is not less than 1 under the given loading history P(r) and initial
conditions wy. ,. To this purpose, consider the maximization problem (49) which provides
a lower bound B on x,. where 6'(¢) and 7 are the u priori specified quantities 6¥(7), 7,
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respectively, which appear in condition (73). In order to prove the proposition. we rein-
troduce the scalar factor « which appeared in the shakedown sufficient condition (42) (see
also the remarks after Proposition 6) and assign to it the value & > 1 of the hypothesis (73).
With this modification, maximization problem (49) is rewritten as:

) = max {2} subjectto: (74a)
NI ¢

A

x = = p (60

O E(ae" (N+6" (N+p).EY) <B. Vizi; CTH=0. (74b)
The Lagrangian functional of the above optimization problem reads:

4

WD () +6 () +p).Ep)—B+d]dr+ J vIC pdr, (75)

1

L:—1+[

vl ‘

where g and v are vectors of Lagrange multipliers and d denotes a vector of positive slack
variables which transforms the inequality constraint into an equality. The Euler-Lagrange
optimality conditions for problem (74) can be computed as follows from functional (75),
denoting for brevity by é the sum ae* (1) + 6" (1) + p:

(- ‘qq)T o
[ 6t (Go. mdr = | (76a)
J o
! c(’;(DT z 3
Jf [; ?0’ (6, \;)‘();H—Cv} dr=0 (76b)
foDT |
(&, (o dindt =0 (76c)
Cp=0 (76d)
OE6.S) <B, ®'u=0, u=0. (76e.£.2)

Notice now that the following vectors:

. _(’E(?T — L ('*(Dﬁ N 7
Po = ($6.CH. o = — gx*(sms)().u (77)

define an admissible yielding cycle of kind @ in the time interval [7, = f.t» = 1]. In fact
variables Py, o satisfy the flow rule associated with functions @ (77), (76e-g) and relations
(76b,c), which coincide with (66a,b) provided that v is interpreted as a vector of dis-
placement rates.

Consider now the above defined particular admissible yielding cycle of kind ® defined
by (77). In view of what precedes the inequality (73) of the hypothesis must hold also for
the above cycle, namely :

[a ﬁq,drsz[,a%dwf 3 dt (78)

.//' vl Vi

where 65(1) = a"(1) + 6" (1) and 6(r) = (26" (1) + 6" (1) + p). Making use of conditions (76b.c)
and noting that p, § are time independent and that p is self-equilibrated, the inequality (78)
can be transformed into the following form:

SAS 32-21-G
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[ Ea® (1) o d. (79)

o

[ﬁ Z6t (1) pedr <

v

As a consequence of eqns (79) and (76a) it follows that « is no less than one. Since the
above Euler-Lagrange relations of the maximization problem (74) are always satisfied by
the optimal solution. one can write the following chain of inequalities:

za = (80)

The inequalitics (80) state that the shakedown limit o, for the structure under the given
loading history P(/) and initial conditions u,. #, is no less than one. Hence shakedown is
ensured and Proposition 16 is proved. Owing to the equivalence between Propositions 15
and 16, the latter implies the former to be satisfied. (q.e.d.).

It is worth noting that the scalar & disappears from the argument of the gradient
¢®"/ég and c®' ¢y in eqns (76) and (77) if the plastic potentials ® are assumed positively
homogeneous of order 1. according to a frequently adopted weak hypothesis.

7. CONCLUSIONS

In what precedes reference was made to material behaviour described by generally
nonassociative elastic-plastic (time-independent) constitutive laws which exhibit nonlinear
hardening governed by internal variables occurring in pairs (according to the so-called
generalized standard and non-standard elastoplasticity).

A notion crucial to the purposes of the present paper is the reduced yield domain
proposed in Maier's earlier shakedown theory in nonassociative perfect plasticity.

Semidiscretization (in space) has been adopted by multifield finite element modeling,
so that vectors of generalized variables (in Prager’s sense, occurring in pairs) govern the
evolution of the discretized solid or structure considered.

On this basis and in the assumed absence of geometric effects, the following
contributions have been presented to the shakedown theory of elastoplastic structural
dynamics.

(a) A further extension. in terms of more general constitutive laws, of the static shakedown
theorem of Melan. extended to dynamics by Ceradini. The present extension, studied as
for the quasi-static context in a separate paper, materializes in distinct sufficient and
necessary shakedown conditions, which yield lower and upper bounds on the shakedown
load factor.

(b) A further parallel generalization of the kinematic Koiter’s theorem and of its earlier
extension to dynamics by Corradi and Maier. The present results consist of distinct sufficient
and necessary conditions for inadaptation.

(¢} Upper bounds on various post-shakedown quantities, as extended versions of bounding
inequalities supposed to be most promising among those available in the literature for
narrower constitutive contexts.

(d) Both the optimization of the upper bounds on history-dependent quantities and the
computation of bounds on the shakedown limits are shown to be amenable to mathematical
programming problems.

Acknowledgements - This study was carried out in the frame of a research project sponsored by the [talian Ministry
for Universities and Scientific Research (MURST. 40%). The author S. Pycko acknowledges with gratitude the
support of the Exchange Program between the National Research Council of [taly (CNR) and the Polish Academy
of Sciences (PAN).



Dynamic shakedown analysis 3165

REFERENCES

Aboustit, B. L. and Reddy. D. V. (1980). Finite element lincar programming approach to foundation shakedown.
In Soils Under Cyvelic and Transient Loading (Edited by G. N. Pande and O. C. Zienkiewicz). Balkema,
Rotterdam.

Alwis. W. A. M. and Grundy. P. (1983). Shakedown analvsis of plates. fnr. J. Mech. Sci. 27,1 2. 71 82.

Carter. K. F. and Ponter. AL R.S. (1986). A finite element and lincar programming method for the extended
shakedown of axisymmetric shells subjected to cyvchie thermal loading. Internal Report n. 86-XX, Department
of Engineering. University of Leicester. UK.

Capurso. M. (1979). Some upper bound principles tor plastic strains in dvnamic shakedown of elastoplastic
structures. J. Soruct. Mech. 7,1 20,

Ceradini. G. (1969). Sull” adattamento dei corpi clastoplastict soggetu ad azioni dinamiche. Giornale Genio Civile
415, 239 258.

Ceradini. G.. (1980). Dynamic shakedown in elastic plastic bodies. J. Engng. Mech. Dic. ASCE 106, EM3. 481 499.

Comi. C. and Congliano. A. (1991). Dynamic shakedown in clastoplastic structures with general internal variable
consututive laws. fnt. J. Plasticity 7, 679 692,

Comi. C. and Perego. U {1995). A untfied approach for vanationally consistent finite elements in elastoplasticity.
Comp. Meth, Appl. Mech. Engng. In press.

Comi. C.. Maier. G. and Perego. U. (1992). Generalized variables and extremum theorems in discretized elastic-
plastic analysis. Comp. Meth, Appl. Mech. Engng 96, 213 237

Corigliano, A.. Maier. G. and Pycko. S. (1994). Kinematic criteria of dynamic shakedown extended to non-
associative constitutive laws with saturation non-lincar hardening. Rend. Mat. Ace. Lincer 5. In press.

Corradi. L. (1978). On compatible finite element models for elastic plastic analysis. Meccanica 13, 133-150.

Corradi. L. and Maier. G.. (1973). Inadaptation theorems in the dynamics of elastic-work hardening structures.
Ing. Arch. 43,44 57

Corradi. L. and Maier. (. (1974). Dynamic non-shakedown theorem for elastic perfectly plastic continua. J.
Mech. Phys. Solids 22, 401 413,

Corradi. L. and Zavelani. A. (1974). A linear programming approach to shakedown of structures. Comp. Meth.
Appl. Mech. Engng 3, 37 33,

Débordes, O. and Nayroles. B. (1976) Sur la théorie et le caleul 4 Madaptation des structures elastoplastiques. J.
Mcecanique 15,1 -53.

De Josselin de Jong., G. (1964). Lower bound collapse theorem and lack of normality of strain rate to yield surface
tor soils. Proc. IUTAM Symp. on Rhcology and Soil Mechanies. Grenoble. pp. 69 78.

Drucker. D. C. (1964) On the postulate of stability in the mechanics of continua. J. Mécanique 3, 235 249,

Gavarini. C. (1969). On clastic recovering of clastic-plastic torced vibration. Giornale del Genio Civile. 251 261
(In [talian).

Genna. F. (1988). A nonlinear incquality. finite element approach to the direct computations of shakedown load
safety factor. fnr. J. Mech. Sei. 30, 769 789,

Gokhfeld. D. A. and Chermavsky. O. V. (1980). Limit Analvsis of Structures ar Thermal Cyeling. Sijthotf &
Noordhoof. The Netherlands.

Haldar. A. K.. Reddy. DD. V. and Arockiasamy. M. (1990). Foundation shakedown of offshore platforms. Comp.
Geotechnics 10, 231 245,

Halphen. B. and Nguyen. Q. S. (1973). Sur les materiaux standards généralises. J. Mécanique 14, 39-63.

Kleiber. M. and Konig. J. AL (1984). An incremental shakedown analvsis in the case of thermal effects. far. J.
Num. Meth. Engng. 20, 567 5373,

Koiter. W. T. (1956). A new general theorem on shakedown of elastic plastic structures. Proc. Kon. Nederl. Akad.
Wer BS9. 4, 24,

Koiter. W. T. (1960). General theorems of clastic plastic solids. In Progress in Solid Mechanies (Edited by S.
Sneddon and R. Hilly vol. 1. pp. 167 221. North Holland. Amsterdam.

Konig. J. A, (1987). Shakedown of Elastic Plastic Structures. Elsevier. Amsterdam.

Konig. J. A, and Kleiber. M. (1978). On a new method of shakedown analysis. Bull. Acad. Polonuise Sei. XXVI,
4, 165171,

Konig. J. A and Mater G. (1981). Shakedown analysis ot elastoplastic structures « a review of recent developments.
Nuclear Engng Design 66, 81 95,

Lears. K.. Klie. W.. Konig. J. A.and Mahrenholz. O. (1983). Experimental investigations of shakedown of tubes.
In Plasticity Today. (Edited by A, Sawczuk. and G. Bianchi)., pp. 399 412, Elsevier. London.

Lemaitre, J. and Chaboche. J. L. (1990). Mechanics of Solid Maicerials. Cambridge University Press, Cambridge.

Maier. G. (1969). Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: a
finite element. linear programming approach. Meccanica 4(3). 1 11,

Maier. G. (1970). A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes.
Meccanica 8, 54 66.

Maier. G. (1973a). A shakedown matrix theory allowing for workhardening and second-order geometric eftects.
In Foundation of Plasticiry (Edited by A. Sawezuk). vol. 1, pp. 417 433, Noordhofl. Leyden.

Maicr. G. (1973b). Upper bounds on deformations of elastic-work structures in the presence of dynamic and
secand-order geometric effects. /. Struct. Mech. 4,265 280,

Maier. G. (1987). A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic—
plastic structural models. Rend. Ace. Lincei Fis. 8, 161 174

Maier. G. and Hueckel. T. (1979). Nonassociative and coupled flow rules of elastoplasticity for rock-like materials,
Int. J. Rock Mechancis Mining Sci. 16, 77 92,

Maier. G. and Novati. G. (1990a). Dynamic shakedown and bounding theory for a class of nonlinear hardening
discrete structural models. fnr. J. Plasticiry 6, 551- 5372,

Maier. G. and Novati G. (1990b). A shakedown and bounding theory allowing for nonlinear hardening and
second order geometric eflects with reference to diserete structural maodels. In Inelastic Solids and Strictures., A.
Sawezuk Memorial Volume (Edited by J. A Konig and M. Klciber). pp. 451 472, Pineridge. Swansca.



3166 A. Corighano ¢t al.

Maier. G. and Perego. L. (1992). Effects of softening in elastic-plastic structural dynamics. Int. J. Num. Meth.
Engng 34, 319 247

Maier. G. and Vitiello. E. (1974). Bounds on plastic strains and displacements in dynamic shakedown of work-
hardening structures. J. Appl. Mech. 41,443 440,

Maier. G.. Pan, L. and Perego. U. (1993) Geometric effects on shakedown and ratchetting of axisymmetric
cylindrical shells subjected to variable thermal loading. Euromech 298, Warsaw. 14-18 Sept. 1992 ; Engineering
Structures. In Press.

Martin. J. B. (1964). Impulsive loading theorems for rigid-plastic continua. J. Engng Mech. Dir. Proc. ASCE 90,
EM 5.27-42.

Martin. J. B. (1973). Plusticity . Fundamenialy and General Resudts. MIT Press. Cambridge MA.

Martin. J. B. (1985). Bounding principles and discrete time integration for statically loaded elestic plastic bodies.
Report n. 68. UCT CSIR Appl. Mech. Res. Unit. University of Cape Town.

Melan. E. (1938). Zur plastizitit des riumlichen kontinuums. /ng. Arc¢h. 9, 116 126.

Morelle. P. and Fonder. G. (1987). Shakedown and limit analysis of shells --a variational and numerical approach.
In Shell and Spatial Structures: Computational Aspecis. Lecture Notes in Engineering (Edited by G. De Roeck
and A. S. Quiroga). pp. 381 405, Springer. Berlin.

Morelle. P. and Nguyen. ID. H. (1983). Numerical analysis of shakedown in plates and axisymmetric shells by
equilibrium finite elements. J. Méch. Théor. Appl. 2, 567 399 (In French).

Naylores, B. and Weichert. D. (1993). La notion de sanctuaire d’elasticite et d’adaptation des structures. C.R.
Acad Sci. Paris 316, Serie 1. 1493 1498,

Palmer. A. C. (1966). A limit theorem for materials with non-associated flow laws. J. Mécanique 5, 217-222.
Pande. G. N. (1982). Shakcdown ot foundations subjected to cyclic loads. In Soil Mechanics—Transient and
Cyvelic Louds (Edited by G. N. Pande and O. C. Zienkiewicz). pp. 469-489, John Wiley & Sons., New York.
Pande. G. N.. Davis. E. H. and Abdullah. W. S. (1980). Shakedown of elasto-plastic continua with special
reference to soil-rock structures. In Soils Under Cvelic and Transient Loading. (Edited by G. N. Pande, and O.

C. Zienkiewicz). Balkema. Rotterdam.

Polizzotto. C.. (1982). A unified treatment of shakedown theory and related bounding techniques. S.M. Arch.7,19-75.

Polizzotto. C. {1984a). A bounding technique for dynamic plastic deformations of damaged structures. Nuclear
Engng Design 79, 365- 376.

Polizzotto. C. (1984b). Dynamic shakedown by modal analvsis. Meccanica 19, 133-144.

Polizzotto. C. (1986). A convergent bounding principle for a class of clasto-plastic strain --hardening solids. Inz.
J. Plasticity 2, 359--370.

Polizzotto. C. (1993). On the conditions to prevent plastic shakedown: part I - theory: part Il- the plastic
shakedown limit load. Trans. ASME. J. Appl. Mech. 60, 15-25.

Polizzotto. C.. Borino. G.. Caddemi. S. and Fuschi. P.. (1991). Shakedown problems for material models with
internal variables. Ewr. J. Mech.. 4. Solids 6, 621 639,

Polizzotto. C.. Borino, G.. Caddemi. S. and Fuschi. P. (1993). Theorems of restricted dynamic shakedown. Ins.
J. Mech. 35,787 801.

Ponter, A. R. S. (1972). An upper bound on small displacements of elastic. perfectly plastic structures. J. Appl.
Mech. 39, 959.

Ponter. A. R. S. (19734). A general shakedown theorem for elastic-plastic bodies with workhardening. In Proc.
SMIRT-3. London, L5 2.

Ponter, A. R. S. (1975b). General displacement and work bounds for dynamically loaded bodies. J. Mech. Phys.
Solids 23, 157 163.

Pycko. S. (1994) An indirect incremental method tor shakedown analysis based on the min-max approach. In
Inelustic Behaviowr of Structures Under Variable Loads (Edited by Z. Mroz. D. Weichert and S. Dorosz).
Kluwer. [n Press.

Pycko. S. and Maier. G. {1994) Shakedown theorems for some classes of nonassociated hardening elastic—plastic
material models. /nr. J. Plasticity. In Press.

Pvcko. S. and Mroz. Z. (1992). Alternative approach to shakedown as a solution of @ min-max problem. Acta
Mech. 93, 205 222,

Radenkovic. D. (1961). Théorémes limites pour un materiau de Coulomb a dilatation non standardisée. Compt.
Rendus Ac. Sci. Parts. meeting of 12th June 1961,

Sacchi. G.. Save. M. (1968). A note on the limit loads of non-standard materials. Meccanica 3, 43-45.

Save. M.. De Saxce. G. and Borkowski. A. (1991). Computation of shakedown loads : feasibility study. WGCS,
AG2 Final Report. CEC. EURI3618EN.

Siemaszko. A. and Konig. J. A, (1983). Analysis of stability of incremental collapse of skeletal structures. J.
Struct. Mech. 13, 301,

Simo, I. C.. Kennedy. 1. G, and Tavlor. R. 1. (1989). Complementary mixed finite element formulations for
clastoplasticity. Comp. Meth. Appl. Mech. Engng 74, 177 200.

Stein, E.. Zhang. G. and Konig. A, J. (1992). Shakedown with nonlinear strain hardening including structural
computation using finite clement method. fnr. J. Plasticice 8,1 31,

Stumpf. H. (1993). Theorctical and computational aspects in the shakedown analysis of finite elastoplasticity. /nt.
J. Plasticity 9, 583 602,

Symonds. P. 8. and Neal. B. GG, (1931). Recent progress in the plastic methods of structural analysis. J. Franklin
Inst. 252,383 492,

Tin-Loi, F. (1980). Deflection bounding at shakedown. J. Strucr. Div. Proc. ASCE 106, 1209-1215.

Tin-Loi. F. and Vimonsatit. V. (1993). Shakedown of [rames with semirigid connections. J. Struct. Engng ASCE
119, 1694- 1711.

Weichert. D. (1986). On the influence of geometrical nonlincarities on the shakedown of elastic-plastic structures.
Int. J. Plasticity 2, 135 148,

White, P. S. (1992). Simplitied methods for the assessment of creep and plasticity effects in cyclic loading at high
temperature. In High Temperature Structiral Design (edited by L. H. Larsson). ESIS 12. Mechanical Engineering
Applications. London.



