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Abstract Reference is made to discrete (finite element) structural modcls formulated in terms of
generalized variables. The constitutive laws adopted are elastic plastic. nonlinear-hardening with
internal variables and generally nonassociative. The notion of reduced domain is employed as a
generalization of a similar concept introduced in earlier developments of shakedown theory. On
this basis. a unified theory is presented. which encompasses: necessary and, separately. sufficient
conditions for shakedown by a static approach as a further generalization of classical Mclan's
theorem: bounds on various post-shakedown quantities: sufficient and necessary shakedown criteria
by a kinematic approach as a further extension of Neal-Symonds-Koiter theorem. By suitable
specializations and relaxations of the achievable results, the criteria and bounding inequalitics
established here are formulated as mathematical programming problems in view of numerical
applications.

I. Il\TRODUCTlOl\

Since its origin in the pioneering work of Bleich and Melan which preceded and anticipated
rigid-plastic limit analysis, shakedown theory represents a prototype of simplified meth­
odology: in the sense that laborious time-stepping inelastic analyses are avoided in assessing
whether plastic deformations will or will not eventually cease to grow in a structure subjected
to variable loads unboundedly repeated in time [e.g. see Koiter (1960) and Martin (1975)].
At an early stage the development of shakedown (SO) theory aimed at relaxing the original
limitations to infinitesimal deformations. quasi-static processes and perfectly-plastic associ­
ative material models. The earliest extensions concerned dynamics (Ceradini. 1969, 1980;
Corradi and Maier, 1973. 1974); nonassociative plasticity (Maier, 1969); hardening behav­
iour (Ponter. 1975a). also combined with geometric effects (Maier, 1973a), and were mostly
based on piece-H'isc-linear constitutive models (multiple linearized yield functions) in order
to exploit the potentialities of linear programming theories and methods. then fashionable
topics in applied mathematics [e.g. Corradi and Zavelani (1974)].

Classical shakedown analysis and its extensions have soon been supplemented by other
simplified methods in the above sense. namely by procedures intended to provide further
information in terms of bounds (primarily upper bounds) on history-dependent quantities
(Ponter. 1972: Maier, 1973b: Maier and Vitiello, 1974).

Meaningful later contributions are partly surveyed, e.g. in Gokhfeld and Cherniavsky
(1980), Konig and Maier (1981) and Konig. (1987) and are only mentioned here through
some representative references. These contributions: provided unified frameworks for both
shakedown criteria and bounds (Oebordes and Nayroles. 1976; Polizzotto, 1982) ; covered
the effects of large deformations (Siemaszko and Konig. 1985; Weichert, 1986; Maier ct

tDedicated to Professor Leo Finzi on the occasion of IllS 70th anniversary

"\ 14.'



3141> '\. Corigli<IIW ,'I "I.

al., 1993: Stumpf. 1993): proposed new bounding techniques (Capurso. 1979: Polizzotto,
1984a. b: Martin. 1985: Polizzotto, 1986): developed computational approaches to shake­
down analysis (Konig and Kleiber. 1978: Morelle and Nguyen, 1983: Kleiber and Konig,
1984: Carter and Ponter. 1986: Genna, 1988: Pycko and M roz. 1992: Pycko, 1994):
applied the theory to real-life situations and compared it to experiments (Tin-Loi, 1980;
Alwis and Grundy. 1985: Lears ct al.. 1985: Tin-Loi and Vimonsatit, 1993): finally,
engineering motivations fostered generalizations to more and more versatile and realistic
material models (Maier. 1987; Maier and Novati. 1990a, b: Comi and Corigliano, 1991 ;
Polizzotto ('I al.. 1991 : Stein el al., 1992: Nayroles and Weichert, 1993). The last trend has
also been suggested by particular but meaningful applications of SO theory to soil-structure
interaction in offshore engineering (Pande, 1982: Haldar el al., 1990) and to steel structures
subjected to thermal cycles in nuclear engineering (Morelle and Fonder. 1987: Save ct al.,
1991: White, 1992).

The last mentioned trend is further pursued in this paper focusing on nonassociative
elastoplastic models. The inelastic behaviour of technically important materials with
internal friction (such as concrete and geomaterials), to many engineering purposes, admits
a phenomenological description in terms of elastic-plastic constitutive laws only provided
these laws are nonassociative. In fact. e.g. for concrete, the normality rule applied to
Drucker Prager's popular yield criterion would entail dilatancy grossly in excess with
respect to the experimental evidence. As pointed out in a parallel paper by Pycko and Maier
(in press). nonlinear hardening constitutive models now widely used for metals exhibit
normality in the stress and strain spaces superposed, but not in the augmented spaces
superposed (i.e. of measurable and internal static and kinematic variables) and, hence,
require an ad hoc generalized shakedown theory.

The early generalization of the static (Melan's) theorem to nonassociative perfect
plasticity (Maier, 1969), was centered on the notion of reduced elaslic domain. A similar
notion. under the more suggestive name of ('laslic sancluary has been re-proposed very
recently in a less restrictive constitutive context (N ayroles and Weichert, 1993) and. to limit
analysis purposes, had been used earlier by Radenkovic (1961), De 10sselin de long (1964),
Palmer (1966) and Sacchi and Save (1968).

The contributions gathered in the present paper. though restricted to the small defor­
mation range. are intended to provide a systematic extension to nonassociative plasticity
of most of the elaslic shakedown and bounding theory at its present (1993) stage of
development.

Therefore. three preliminary choices have been made to characterize the present study:
(a) dynamic context: (b) finite element semidiscretization in generalized variables; (c)
internal variables multimode elastoplastic constitutive laws: (d) unifying theoretical frame­
work encompassing as special cases a number of available results. Cyclic plasticity or plastic
shakedown is regarded here as a case of lack of SO (inadaptation) and is not dealt with per
se. A comprehensive theory of plastic shakedown was developed recently by Polizzotto
(1993 ).

The chosen setting is intended to help reconciling the conflicting requirements of
general theoretical foundations and practical analysis methodology. In particular the pre­
sent contributions aim at narrowing the persistent gap between shakedown theory and its
potential applications to geodynamics and to seismic and offshore engineering, [e.g. see
Pande ('I al. ( 1980). Aboustit and Reddy (1980) and Haldar el al. (1990)] : in fact. in these
areas both inertial effects and nonassociativity may play an important role.

The contents of the paper can be outlined as follows: Section 2 is devoted to a
description of the two main unifying ingredients of the subsequent developments: discrete
structural models centered on the notion of generali::ed l'Qriahles: material models with
internal variables and with yield functions and plastic potentials, which are generally
different but both subjected to the restrictions which are felt to be necessary for a com­
prehensive shakedown theory. The concept of generalized variables, though stemming from
Prager's work. entails various advantages in multifield (mixed) finite element modeling of
elastoplastic solids [e.g. see Corradi (1978), Simo ('I al. (1989), Comi el al. (1992) and Comi
and Perego (in press)]. but in addition provides here the unifying benefit of preserving
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essential features of the continuum tensorial description. The constitutive laws are for­
mulated in generalized variables for materials (Gauss points), finite elements or structural
components alike, and expressed in pairs of work-related internal and measurable or
external variables (one extensil'e or kinematic, the other intensil'e or static), according to the
general thermodynamically based pattern which is now popular in the plasticity literature
(Halphen and Nguyen. 1975; Lemaitre and Chaboche, 1990).

Section 3 establishes an inequality which is called central or fundamental, inasmuch
both shakedown theorems by the static approach and bounds are derived from it in
the subsequent two Sections. Use is made of fictitious linear elastodynamic responses (a
traditional notion in SO theory) and of the unifying concept of perturbation variables
proposed by Polizzotto (1982).

Section 4 expounds results established here by the static approach, in the spirit of the
Bleich-Melan theorem, as a further extension ofCeradini's theorem on dynamic shakedown
[e.g. see Ceradini (1969), Maier (1970), Maier and Novati (1990b) and Comi and Corigliano
(1991)]. A parallel generalization in the quasi-static range with reference to specific material
models (Chaboche model for metals and Resende Martin's model for geomaterials) is
presented in a companion paper (Pycko and Maier. in press).

Various history-dependent, post-shakedown quantities of practical interest are shown
in Section 5 to be bounded from above by means of inequalities derived from the fun­
damental one, simply by making special selections of the perturbation variables. Bounds
may turn out to be loose: some prospects of their optimization are briefly discussed.

Section 6 presents results arrived at here by a kinematic approach, in the spirit of Neal­
Symonds' and Koiter's theorem (Symonds and Neal, 1951; Koiter, 1956), as further
generalization of Corradi-Maier theorem on dynamic shakedown (Corradi and Maier,
1973, 1974; Comi and Corigliano, 1991 ; Polizzotto et al., 1993).

In Sections 4 and 5 various contributions are presented through suitable specializations
and or relaxations of constraints, in order to formulate procedures of computational
interest, mostly by (nonlinear) mathematical programming. The simplifications achievable
in the practically important case of periodic excitation are pointed out, similar to those
noted earlier in narrower contexts (Gavarini. 1969; Maier and Novati, 1990b).

Finally in Section 7 the main flndings are synthesized with supplementary comments.

2. FOR\lLLAnON OF PROHL.E\1

2.1. Gorerning relations in generali::ed wriahlcs
The inelastic, small deformation dynamic response of a solid or structure occupying

volume Q and modeled in space as an aggregate of finite elements or structural components
can be governed by (ordinary. nonlinear) differential equations of the following kind:

e(l) = CU(l)

Mli(t)+V"(l)+C'(J(t) = P(l)

iT = iT(t:e(r), r:( t))

associated to the initial conditions:

U(O) = Uo "(0) = "0'

(I)

(2)

(3)

(4)

The symbology used above is specified as follows: u, e and (J are vectors of the
generali::ed variables which govern the (unknown) displacements, strains and stresses,
respectively. through the relevant. element-wise chosen interpolations; P denotes the load
vector equivalent to the given external forces: C is the geometric compatibility matrix; M
and V represent the (symmetric. consistent) matrices of inertia and viscous damping, the
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former being assumed positive-definite, the latter positive-semidefinite; finally, dots mark
derivatives with respect to time t (or r). Note that the linear damping defined by matrix V
expresses structural (e.g. frictional) effects and not material viscosity. V can be assumed as
linear combination of the mass and the elastic stiffness matrices.

Nonlinearity is implied only by the elastic-plastic (inviscid) constitutive law, which
will be explicitly formulated later in an internal variable format.

The variables used in the semidiscretization leading to eqns (1)-(4) are called gen­
eralized in Prager's sense when they are endowed of the following features: (i) variables are
introduced in pairs of conjugate quantities, each pair containing a static field, say s (x) (or
vector s) and a kinematic field, say k (x) (or vector k), x being space coordinates; (ii)
denoting by N, and N k shape matrices of interpolation functions, such that:

sex) = N,(x)s k(x) = Nk(x)k

the (inrerse) relations hold true:

s = In N~ (x)s(x) dO k = In N; (x)k(x) dO.

(5)

(6)

The meaning and implications of the recourse to generalized variables in the con­
struction of a semidiscrete structural model can be elucidated through the following
remarks.

(a) A necessary and sufticient condition for eqns (6) to hold as a consequence of inter­
polations (5) is provided by the orthogonality condition of the conjugate interpolation
functions:

I' N?(x)Nk(x) dO = I.
.n

(7)

(b) A crucial implication of eqs. (6) is the conservation of the scalar product, namely, the
relation:

I
, ST (x)k(x) dO = sTk for any s, k.
.()

(8)

(c) In order to satisfy relation (7), a simple way is to choose first interpolation functions
of one field, e.g. Nk(x), and then to determine the interpolation functions of the conjugate
one, :\IJx) through the relationship:

(9)

(d) Eqns (5)-(9) can be written for each element oe (using an element index e on all
symbols). As an alternative. here preferred, each interpolation can be defined over the
whole solid or structure (i.e. with x EO), being understood that it vanishes outside its
support, so that vectors sand k concern the assemblage of elements.
(c) The above definitions and remarks apply to the following kinematic (or extensive)
variables: strains (total e, elastic e and plastic p), kinematic internal variables 'I, plastic
multipliers t The conjugate static (or intensive) variables are, respectively: stresses (1, static
internal variables X, yield functions qJ (and plastic potentials cD). The pairs ('I, X) and 0., qJ)

will be defined below (Section 2.2) by making the constitutive law (3) explicit. Another pair
is formed by displacements u and loads P.
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(f) Special cases of consistent modeling by generalized variables are discussed elsewhere
(Comi and Perego, in press). In order to fix ideas, one can refer here, e.g. to a 3D solid
discretized into constant-strain, four node, tetrahedral described in terms of natural element
variables (I: == edge elongations; (1 == equivalent self equilibrated edge forces).

Imposed (e.g. thermal) strains might be introduced in the constitutive law (3) but will
not be considered here for brevity. Similarly, possible imposed displacements will be
assumed zero (they may always be simulated by suitable strains imposed on fictitious
elements added along on the kinematically constrained variables).

2.2. Elastic-plastic nonassociatiuc constitutivc lairs \i'ith internal variables
The above adopted semidiscretization based on the notion of generalized variables

implies, as a first formal advantage, that constitutive laws preserve a meaning and all
essential features in passing from material (i.e. homogeneous specimen; or Gauss point) to
individual finite elements and to assembled aggregates of finite elements. We will profit
from this circumstance by formulating the envisaged class of material models directly in
terms of the generalized strain and stress vectors I: and (1 which already intervened in eqns
(I )-(4).

The Helmholtz'sFee energy is assumed to be the sum of two addends: the recoverable
elastic strain energy qJe expressed by a positive definite quadratic form of the elastic strains
e; the stored elastic energy qJ" locked in the material by the microscale rearrangements
globally described by the kinematic internal variables" and expressed as a convex, differ­
entiable function of them:

qJ(e.,,) = ieTEe+ qJ,(,,), (10)

where E represents the (block-diagonaL symmetric, positive definite) matrix of the elastic
stiffnesses.

The static counterparts (1 and X are related to the kinematic variables e and ", respec­
tively, as gradients of the potential qJ, i.e. through the state equations:

DqJ
(1 =-- = Ee'rie . (11 )

The former equation is Hooke's law, the latter defines the (generally nonlinear) hardening
rule. The plastic potentials. collected in vector <D«(1. X), are assumed to be convex and
differentiable functions of the static variables (1 and X. If vector). gathers the plastic
multiplier rates measuring the yielding processes in all modes of all elements, the flow
rules which govern the consequent evolution of plastic strains p and kinematic internal
generalized variables ". are defined by:

('<DT
.

p= -- 1, q=((1
D<DT

•
--A l?o.?X ' (12)

The mechanical dissipation has to comply with the thermodynamical sign-constraint:

( 13)

where the assumed additivity of elastic e and plastic p strains has been used.
The yield functions gathered in vector qJ «(1. X) are for all modes assumed convex

differentiable functions of the static variables, so that they define. locally for all elements
separately, convex fixed yield domains in the spaces of element generalized stresses and
static internal variables (called henceforth augmented stress spaces) :
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tp(rr. X) :s; O. (14)

The loading-unloading conditions (typical of plastic models centered on the concept of the
yield surface) are expressed by the usual complementarity relationship. which holds also
component wise due to the sign-constraints on the two vectors involved:

(15)

Since in the above constitutive law the plastic potentials playa role only through their
gradients. the indeterminate additive constants will henceforth be removed by setting, as a
normalization. that they are equal in the origin to the yield functions.

It is important to notice that the theoretical results presented in the subsequent sections
are derived under the hypothesis that neither saturation hardening nor bounding surfaces
are considered in the class of constitutive models here discussed. Generalization of shake­
down conditions, in particular for the kinematic approach (see Section 6) for constitutive
laws in which saturation hardening and bounding surfaces are taken into account are
presented in a parallel paper (Corigliano ct ill.. in press).

2.3. Restrictions on the nonassociiltil'itr.
Focus is herein on constitutive models which entail plastic potentials <I> different from

the yield functions tp pertaining to the same yield modes.
This difference (i.e. lIolliissociiltiritr, or lack of normality) is strongly suggested by the

experimentally observed behaviour of many engineering materials as the main manifestation
of their internal friction. as noted in Section I. It is well known that nonassociativity has
far-reaching consequences in plasticity theory. First of all it generally invalidates Drucker's
classical postulate (Drucker. 1964). This is orten given the formulation:

("r;1 [a(t)-a']1 dp(t) ~ O. Va' such that tp(a') ~ O.

Its main particular implications read:

[a(t)-aTp(t) ~ 0 Va' such that tp(a') ~ 0: irli; ~ O. Vi;.

(16)

( 17)

Of eqns (17). the former represents Hill's maximum work principle. The latter means
stability according to the second-order work statical criterion. and was shown (Maier and
Hueckel. 1979). to be violated for all paths i; belonging to a cone whenever the hardening
modulus h is below a non-negative threshold he. In perfect plasticity, i.e. for h = 0, non­
associativity implies h, > 0 and. hence. lack of stability according to the criterion (17).

In order to later establish shakedown criteria. the following hypothesis will be used in
combination with the constitutive relations (10)( 15).

(18)

Here <I> is the vector of plastic potentials (sec cqn ( 12) : l is the vector of plastic multipliers.
The vector of constants B is defined (and numerically evaluated) as follows:

subject to :

B, = min <1J,(a. X)
f!,!

(I9a)

(I9b)

Problem (19) amounts to minimizing the :x-th plastic potential <1J, in the augmented space
(a. X) over the corresponding :x-th yield mode. namely over the portion of the yield surface
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Fig. I. Generatioll or the j-th mode or the reduced d()Jllain schematically illustrated in the augmented
space (J. z: shaded region oul or reduced domain.

defined by the equation (,0,(a. z) = 0 (see Fig. 1). The constants B, generated by (locally)
solving problems (19) for all 'Y.. are collected in vector B and give rise to the inequality:

<1>(1. z) B:s O. (20)

The convex domain defined by (:~O) will be referred to as redllced domain. If B is defined as
above. relation ( 18) is certainly sa tisfied beea usc. whenever 1 > O. the corresponding point
(G, X) in the space (a, Z) belongs to the yield surface and therefore is outside, or at most on,
the boundary of the reduced domain [i.e. <1>(0-, X) - B ?: OJ. The definition of the vector of
constants B in the form of a constrained optimization problem (19). of the reduced domain
and related notions arc discussed and illustrated by special cases in (Pycko and Maier, in
press).

Inequality (18) is seen to be complied with iflhe difTerence between the plastic potentials
and the yield functions is bounded from below over the yield domain. i.e.

<I> -!p ?: B. (21 )

Inequality (18) can thus easily be proved from (21) through equation (IS). As a special
case associative behaviour. i.e. <I> = !p. implies B = 0 in (18).

The existence of (finite) constants B and. hence, the validity of inequality (18) can be
regarded as a (weak) constitutive hypothesis additional to (10)-(15).

2.4. Shakedmrn and refated concepts
Like in classical plasticity theory. shakedown (or ('fastie shakedown or adaptation or

stabilization) will be said to occur in a dynamical system modeled as described in what
precedes. if a suitable overall cumulative (non decreasing) measure of the yielding process
is bounded above in time. Such measure is identified here in the energy dissipated throughout
the structural model. In other terms in view of eqn (13), the shakedown criterion adopted
reads (T being integration varia ble) :

lim ) [)( I) = I (a I p -- Z I tj) d T < f ..

I 0111

(22)

Inadaptation. i.e. the event contrary to shakedown. (D(f) --> YJ) occurs either with
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unbounded displacements (IIull ---> ex : incremental collapse or ratchetting) or with bounded
displacements and, hence, bounded plastic strains (alternating plasticity).

The next two Sections are intended to establish a priori criteria for SD or lack thereof.
A priori means here susceptible to be used on the basis of purely linear-elastic analysis of a
suitably defined fictitious process, thus avoiding laborious inelastic time-stepping solutions.
In the same sense a priori upper bounds will also be proven on post-shakedown, history­
dependent quantities.

" FICTITIOUS ELASTIC PROCESSES AND CENTRAL INEQCALITY

3.1. Linear-elastic auxiliary analyses
In view of subsequent developments, let us consider the following problems concerning

the structural model of Section 2 now supposed to be uncapable of any plastic yielding.

(A) Elasto-dynamic response (superscript E) to the given external actions P(t) with homo­
geneous initial conditions. The governing equations are:

MiiE(t) +VuE(t) +CT(1E(t) = pet)

SE = CUE, (1" = ESE. uE(O) = O. uE(O) = O.

(23a)

(23b)

(B) Free vibration (superscript F) owing to suitably chosen, generally fictitious (capped
symbols) initial conditions in the absence of external loads :

(24a)

(24b)

(C) Elastostatic selfstress response p to a time-independent plastic strain distribution ps.
The relevant governing equations

CTp = 0, s' = Cu'. p = E(il'-pS)

can be solved explicitly. whenever convenient. to give:

(25)

(26)

Clearly. the solution to the elastodynamic problem (A) captures the loading history data,
and can be regarded henceforth as an input for subsequent inelastic analyses.

3.2. A fundamental inequality
The subsequent derivation of shakedown criteria and bounds can be carried out in a

concise way, ifit is based on the following statement (Prop. I), which per se does not exhibit
an explicit mechanical meaning (Polizzotto, 1982).

Consider a fictitious process (or comparison elastic response) consisting of the super­
position of the solutions to the linear problems A-C, of Section 3.1. eqns (23-25) and
denoted henceforth by a cap (without superscript) on the symbols of the relevant quantity,
e.g.

(27)

Proposition I. Fundamental inequality. Suppose by hypothesis that:
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(28)

for a certain finite time instant i. for some parameters (j. s. r. v. w. internal variables il and
Z, self stresses P. (all time-independent) and. finally. for some fictitious initial conditions
giving rise to the free vibration stresses o-f(t).

Then (as a thesis proven below) the following inequality holds true:

where

(29b)

(29c)

In eqns (29) : r is the dummy variable of time integration : ~ denotes the difference between
the actual structural response and the above defined fictitious process. cf. eqn (27): Z is
conjugated with il through eqn (11 b).

The time independent parameters q. 05, r. v. W in eqns (28) and (29) have no physical
meaning but provide a convenient unified tool for the later generation of bounds. They can
be called ,gap or perturbalion parameters (without any link with conventional perturbation
methods). The first and the second integral in eqn (29a) can be interpreted as a multi­
perturbed and the actual cumulative dissipated energy (cp. eqn 13), respectively.

ProoF Since in the actual process A?? O. inequality (28) implies:

(30)

In the hypothesis inequality (28) the argument (a. x) of the plastic potential (Jl can be
interpreted as perlurbed fictitious stresses and static internal variables. namely:

a(l) ==(o-(t)+r)q. X ==(Z+v)s, <i> == (Jl(a(l).X).

In view of the constitutive assumption (18), we can write:

(31 )

(32)

Because of the assumed convexity of the plastic potentials (Jl and making use of the flow
rule (12) we ean write:

From (30). (32) and (33) it follows that:

(34)

By substituting into it eqns (3Ia.b) and integrating over the time interval [i. I], inequality
(34) yields:
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Focusing now on the first term on the Lh.s. of eqn (35). we write the virtual work equation:

(a-tI)T. [p+ E I (a-b)] = - (ti-u)TM' [u.-fi] - (u.-fi)IV· [u.-fi]. (36)

In fact, the factors in square brackets are easily recognized to form a set of compatible
kinematic quantities. while the factors which pre-multiply them turn out to satisfy the
dynamic equilibrium equations. Since the viscous damping matrix V is positive semidefinite.
without the relevant term eqn (36) becomes an inequality; which after rearrangements can
be written in the form:

(37)

As for the second term on the r.h.s. of eqn (35). recalling the definition of stored-energy
potential 'P,. eqn (10), and the state eq uation ( II b), account taken of the time-independence
of it (and X), it leads to the equality:

(38)

Let us now make use of the inequality (37) and of eqn (38) in the integrands on the Lh.s.
of inequality (35). Integrating in time and keeping in mind the definitions of L e (29b) and
L, (29c), this Lh.s. can be given the expression:

(39)

and can be deprived of the addends LeU) and L,(t) without jeopardizing inequality (35),
since the former addend is non-negative owing to the nature of matrices M and E and the
latter is so owing to the assumed convexity of the stored energy potential 'Ps and to the fact
that X == (c'I'Pfll,;· Thus. the inequality (35) is seen to reduce to the inequality (29a). which
embodies the thesis to prove. (q.e.d.)

4. SHAKEDOWN A"JAL YSIS BY A STATIC APPROACH

4.1. Shakcdo\l'n theore/ll.l'
Static approach means here that constant static variables, namely selfstresses jJ (like

in Melan's theorem) and internal variables X(which do not exist in perfect plasticity) play
the role of trial parameters, besides fictitious initial condition uo. Ul}' Antecedents can be
found in Melan (1938), and, as for dynamics. in Ceradini (1969) for perfect plasticity and
Maier (1970) for piece-wise-Iinear hardening plasticity.

Let us specialize the choice of the perturbation parameters which intervene in the
hypothesis (28), by setting the vectors to zero and taking scalars q and s equal:

r=O:v=O;w=O q=s=w>l.

Thus the fundamental inellll~llitv (::'9aL becomes'

(40)
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(41 )

Since the Lh.s. is a nonnegative finite quantity independent of the current time t, in view of
the definition (22) of shakedown, inequality (41) means that the quantity (D(t) - D(i» and,
hence. since i is a fixed finite time. the overall cumulative dissipated energy D(l) is bounded
above in time.

By recovering now the hypothesis (28) specialized in accordance with assumption (40),
the conclusion attained can be stated as follows.

Proposition 2. Sufficient condition jiJf shakedOll"n. The semidiscretized (space-modeled)
structure will shakedown under the given loading history P (I) and initial conditions Uo, "0,

if there exist a time i. time-independent static internal variables X' a scalar OJ > 1 and a
fictitious process 17(1). see eqn (27). (i.e. selfstresses jJ and fictitious initial conditions "0' uo),

such that:

$((1)17. (lJX) ~ B. VI:? i.

where B is the vector of constants which appears in the constitutive relationship (18).

(42)

Like in the classical theory. a supplementary conclusion flows from the notion that
shakedown means that plastic yielding does not occur after a finite time 1. Through a direct
customary path of reasoning. not duplicated here for brevity [e.g. see Maier and Novati
(1990a)] the following statement is easily established.

Proposition 3. NeCe.llillT cO/ldilio/ljilf shakcdO\\'II. If the structure shakes down under the
given external actions. then there exist a time i. time-independent static internal variables
X, and a fictitious process 17(1). such that:

<pea. X) ~ O. \/I:? i. (43)

Adopt again the special selection (40) of the perturbation variables but with
q = s = w = 1. The same path of reasoning followed in the proof of Prop. 1. Section 3.2.
(except the time integration) leads first to the specialization of eqn (34), namely to:

(44)

whence. through eqns (37). (38) and (29c). one arrives at the inequality:

(45)

Note that, by means of a Taylor series expansion around ~. the expression (29c) of the
stored energy function L,. becomes:

(46)

The Hessian matrix in eqn (46) is positive semidefinite because of the assumed convexity
of the stored energy \}l,. It becomes constant for linear hardening (hardening matrix
A = AI). when the higher order terms in eqn (46) identically vanish. In this case if A is
nonsingulac L,o + L, can be assumed as an energy norm of the difference between the actual
and the fictitious process. As a conclusion. inequality (45) can be interpreted by the
following statement.
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Proposition 4. Non-expansivity property. If the same hypothesis of Prop. 2, inequality (42),
holds with w = I, then the distance between the actual and the fictitious process measured
by the energy norm L e + L s' does not increase in time.

4.2. Bases olanalysis procedures and remarks
The above statements, especially 2 and 3, playa crucial role as a basis for analysis

procedures and, hence, are worth being commented on in some detail.
Let a ~ 0 be the loadfactor, i.e. a common multiplier ofall external actions. Shakedown

analysis primarily seeks the safety factor with respect to inadaptation, or shakedown limit
as> namely the critical threshold ct.s below which the system still shakes down and above
which it does not. The following bounding statements emanate from Props 2 and 3,
respectively.

Proposition 5. Lower bound on Lt." The shakedown limit as is bounded from below by the
number 'Y.,- such that:

as~Lt.s ==max{o:}, subject to: <J)('Y.C1E(t)+&F(t)+p,X)~B, Vt~i. (47)
'i,/i,i..
i.uo.~().

Proposition 6. Upper hound on 0:,. The shakedown limit as is bounded from above by the
number 'Y.: such that:

'Y.s~o::==max{'Y.}, subject to: cp(ME(t)+&F+p,X)~O, Vt~i. (48)
'2./).(.

r.up.uo_

In both Propositions 5 and 6, the load factor mayor may not be regarded as a multiplier
of p, Xand of the fictitious initial conditions (and, hence, of their linear effects &F), in view
of the role of these quantities in the shakedown criteria 2 and 3. The latter alternative was
preferred above in view of the computational methods discussed later. This very same
remark, supplemented by the weak constitutive hypothesis that each plastic potential
monotonically increases with an argument multiplier, justifies the fact that the scalar w in
(42) does not show up in (47). The transition from the strict inequality w > I to the loose
inequality in (47b), in view of applications, should rigorously be accompanied by redefining
'Y.s as the value separating the set of load factors (a < 'Y. s) for which shakedown is ensured
from the set of those ('Y. > as) for which it is ruled out and by replacing max by sup in (47a).

The following remarks are intended as subsequent steps towards procedures of prac­
tical interest in applications.

(a) Suboptimizations. Let the initial conditions uo, uo, and the instant i be chosen a priori
instead of being dealt with as optimization variables. With these additional constraints,
maximization problems (47) and (48) yield suboptimal values and reduce to much simpler
problems, i.e. respectively, to:

'Y.s ~ as- ~ f3 (uo, fio, i) == max {a} subject to (47b)
'l..,'·i

O:s ~'Y.: ~ f3+ (uo, fio' i) == max {a} subject to (48b).
'X.f),X

(49)

(50)

Clearly, the solution of (49) is potentially more useful than that of (50), which provides
unconservative information on as.

Natural choices of the fictitious initial conditions are: (i) homogeneous conditions
(uo = 0, Uo = 0) which imply &F(t) == 0 and eliminate the elastodynamic problem B ofSection
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3.1 ; (ii) actual conditions (u" = U". u" = u,,). which identify the fictitious process O'E I o-F

with the elastodynamic response to the complete set of external actions.
However. in the special case of periodic loads P(I). a different choice becomes definitely

more attractive as shown below.

(b) Periodic excilCirioll. The ract that the actual initial conditions have no influence on
shakedown (understood as boundedness in time of the dissipated energy) is physically well
expected and quite apparent from the dynamic shakedown theory both in the classical and
in the present context (see criteria of Section 4.1). In many engineering situations, the
external actions are periodic and the structural response which practically matters consists
of steady state periodic motion unaffected by initial conditions (the initial transient affected
by the initial conditions. which are often uncertain, is soon or later damped oft). Peculiar
nonlinearities, such as geometric or/and physical (constitutive) instabilities, may cause non
periodic chaotic responses [e.g. see Maier and Perego (1992)]. For linear elastodynamic
responses, steady state periodic motion rigorously occurs asymptotically in time and can
be uniquely determined under the following hypotheses (Tbeing a finite excitation period):

(51 )

Then, one can easily compute the special fictitious initial conditions such that, if actually
imposed at t = O. they would make the asymptotic. steady state periodic motion to start
from t = 0 (transient-suppressing conditions. say u::. u:;). From this notion a simple path of
reasoning adopted in the classical context [e.g. see Corradi and Maier (1973) and Maier
and Novati (I 990a)] and not duplicated here for brevity. leads to the following practically
important statement.

Proposition 7. Periodic ('Ycirurioll. Undcr periodic loading. eqns (5Ia). the transient sup­
pressing conditions and the time origin are optimal in both maximizations (47) and (48).

In other terms. setting i = 0 and u" = u:;.~" = u~. the optimizations (47) and (48) are
to be performed in Yo. p. Xalone: i.e. with reference to problems (49) and (50):

{J (u:;. u~:. 0) = 1,: {J (u~:. u~;. 0) = 1,- . (52)

(c) Time remowl. As another step towards applications. without loss of generality,
time can be eliminated as follows rrom the preceding optimization problems.

Starting form the elastodynamics stress history O'C(t) for t ? i preliminarly obtained
by solving the linear problem (A). Section 3.1 [with data P (f). U~, = O. u~ = 0]. a minimum
com'ex hull Hi containing 1T~(f) for r > i locally. in the stress space of each (j-th) element
or Gauss point can be defined.

The free vibration response 0"(1) either docs not intervene (with homogeneous or
transient-suppressing fictitious initial conditions) or can be ignored by choosing i sufficiently
large in the suboptimizations. In the most general case. 0'1-(1) can be dealt with as above
specified for O'C(t). like a term added to it when the fictitious initial conditions are not
considered as optimization variables.

Let 11 be the boundary of H; (or elastic eIIeelopt'). Thus, because of the assumed
convexity of both plastic potentials and yield functions (Section 2.2), all the preceding
maximization problems can be transformed into relevant suboptimization problems by
enforcing their constraints over 0'1 E f (or 0" +0-' E f). f being the union ofalll i(f = U

I
IJ,

instead of over all r > i.
Let 1;denote the set of I'ertices or a convex fJohhedron which contains the minimum

convex hull Hi in the relevant (i-th) stress space. Then all the preceding maximization
problems. including the suboptimization just mentioned arc transformed into relevant
suboptimizations by enforcing their constraints over O' t E f* (or 0'1- +0-1- E r*), r* being the
union of all If. The noteworthy computational gain now achieved is that the new problems
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are mathematical programming problems (with discrete numbers of both variables and
constraints).

5. BOm"DS ON HISTORY-DEPENDENT QLANTlTIES

5.1. Bounding inequalities
At present, the shakedown theory usually concerns both the original problem of

determining the safety factor with respect to inadaptation and the related problem of
achieving information, primarily upper bounds, on quantities which depend on the yielding
history, in both cases by skipping the step by step solutions. Pioneering work on bounds in
inelastic structural analysis was done by Martin (1964) and Ponter (1972, 1975b). The
original distinction between direct and indirect bounds [e.g. see Konig and Maier (1981)]
is superseded by unifying approaches [cf. Polizzotto (1982) and Maier and Novati (1990a)]
of the kind adopted here. Accordingly, bounding properties are stated below first, and
subsequently, in a single proof. they will be shown to flow from the fundamental inequality
of Section 3.2. For convenience, it is recalled here from eqns (29b,c) and, for the special
case of linear hardening, from (46), the meaning of the elastic strain energy Lc(O) and of
the stored energy Ls(O), associated with the difference between actual and fictitious processes
at the time origin t = 0 (subscript 0 for time-dependent quantities) :

1(. ~)TM(' ~) I( '\.)TE l( '1-") I'TZ' ( 'F)IE IZp'= :; Uo -Uo Uo -Uo +:; 110 -110 110 -110 -:;P p- 110 -110 (53a)

(53b)

The second expression above given to the function Le(O) can be obtained using the definition
of the fictitious stress response a(t) [eqn (27)], the fact that I1

E(O) = 0 [eqns (23b), and eqns
(26a,b)] which relate the self stresses p to plastic strains p.

Often it is reasonable to assume that no plastic deformations exist at t = O. Then in
view of eqns (I) and (II) : 110 = 0 (and, hence, tIJ,(O) = 0) ; 110 = Eeo = ECuo. In this case,
when the fictitious initial conditions are assumed to be coincident with the actual initial
conditions, the r.h.s. of (53a) reduces to ~pTE I P= - ipTZp.

Proposition 8. Bound on linear functions ofL A linear combination with coefficients w ? 0
of the cumulative plastic multipliers A(t) which measures the yielding of the available modes
up to the time instant 7> 0, admits the following upper bound:

if: <I>(a(t), X) ~ B-w, over 0 ~ t ~ 1.

(54a)

(54b)

Proposition 9. Bound on linear functions olp. A linear combination, with coefficients r, of
the plastic deformations p developed up to an instant t, is bounded above by the inequality:

rTpU) ~ Lc(O)+L,(O)+rTp(O)

if: <I>(a(t)+r,X) ~ B, over 0 ~ t ~ 1.

(55a)

(55b)

Proposition 10. Bound on linearlunctions (Jfll. A linear combination, with coefficients v, of
the kinematic internal variables II at instant t is bounded above by:

-VTII(t) ~ L c(O)+L,(O)-V'II(O)

if: <I>(a(t) , X+v) ~ B. over 0 ~ t ~ 1.

(56a)

(56b)
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Proposition 11. Boulld on plastic \rork. The plastic \\lork performed in the whole structural
model up to the time t admits the bound:

if: LI > 1, <I> (qa(t) , X) ~ B, over 0 ~ t ~ 1.

(57a)

(57b)

Proposition 12. Boulld Oil cllerqr 't',. The energy 't', (fl) stored in the whole structure up to
time t (because of rearrangements at the microscale represented by the kinematic internal
variables fl) admits the bound:

if:O < s < I. <I>(a(t),sx) ~ B, over 0 ~ t ~ 1.

(58a)

(58b)

Proposition 13. BOl/llds Oil residual displacements. Residual displacements uP at time tare
the displacements which would define the deformed configuration if the actual plastic
strains p at time t were imposed as initial strains, statically on the structure. A linear
combination with coefficients P (dummr loads) of residual displacements at time t, denoting
by (J the elastostatic stress response to dummy loads P. is bounded above by:

if <I>(a(l)+o-,X) ~ B. over 0 ~ t ~ 1.

(59a)

(59b)

ProO(I·. All the above statements are corollaries of Prop. I. Section 3.2. In fact, they can be
obtained from it by setting i = 0 and choosing the perturbation variables so that, in the
fundamental inequality (29a), the quantity to bound be isolated and related only to a
function of available (and, hence. known) trial quantities. The trial quantities p, X, UO and
60 are constrained by the constitutive inequality (28) specialized in turn to the conditions
(54b)-(59b) under which the upper bounds (54a)-(59a). respectively, are valid.

Specifically. the suitable choices of the perturbation variables are easily seen to be as
follows:

II w

['mpS ] 1 0 0 ~o

PI"<)p ') 1 1 ",0 0 0
Prop 10 I 1 0 ",0 0
I'rnp II >1 I () 0 0
1'1"<)1' 12 I >0. < I () 0 0
1'1"<)1' 13 1 I iT () ()

To prove Proposition 13 concerning residual displacements, it should be noticed that
if p(f) are the self stresses owing to p(f). the virtual work principle requires that:

(60)

Therefore. the linear combination of residual displacements (or work of dummy loads
for them) to be bounded equals the quantity o-Tp. on which the fundamental inequality
(29), with the above specified choice of perturbation variables. directly provides an upper
bound.
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5.2. Remarks on applications and hound optimi::ations
First of all it is worth noting again that plastic deformations can be reasonably ruled

out in the actual process at t = O. This implies that A(O) = 0, p(O) = 0 and '1(0) = 0 in eqns
(54). (55a), (56a) and (59a).

In applying Props 8-10 and 13. a bound on a single component (say the i-th) of the
relevant vector is likely to be of interest. Obviously, this is achieved by specializing the
linear combination to bound. namely by setting to zero all coefficients but one and to, say,
i', the coefficient of the component in point. I t is worth noting. however, that i'i represents
an additional trial variable; in fact, setting ','j = I is a legitimate choice but not necessarily
the best one. Clearly the same can be said of a factor ;' applied to any chosen vector (r, v
or w) of linear combination coefficients.

Similarly. in Props II and 12 scalars q and or s are additional trial parameters. The
available trial parameters already present in shakedown analysis p, X, "0' 60' and the new
one i' (or '/,) or q and/or s, depending on the quantity of interest, may be used to improve
the bound by decreasing it. In fact. a bound may turn out to be much higher than the
relevant actual quantity: then the information provided. though conservative, is hardly
useful in practice. This motivates the optimizations (or suboptimizations) discussed below.

Consider. e.g. the upper bound (55), Prop. 9. on the j-th actual (generalized) plastic
strain component at time 1, Pl(t). singled out from vector p(1) by setting rT == {O... 0, rj = Y,
O... O} and assuming p(O) = O.

Then, according to Prop. 9, the optimal upper bound is provided by the solution of
the problem:

Pi :( p~'PI = n;,i~ f [L,.(O) + L,(O)]}
Up_ll ll

subject to: i'? O. $(0.1 (t)+al(t)+p+r.X):( B. over 0 :( t:( 1,

(61a)

(61 b)

where Le(O) and L,(O) are specified by the expressions (53a) and (53b),
N ow let us compare the above minimization problem (61) to the maximization problem

(47) intended to optimize the lower bound on the safety factor with respect to inadaptation
according to Prop. 5: it is noticed that the constraints are basically the same; the objective
functions are both convex, quadratic in (61) and linear in (47) (in the variables p, X).

The path of reasoning which led (47) to simpler suboptimizations and, finally, to a
mathematical programming format. was unaffected by the nature of the objective function,
and, hence, turns out to be applicable unaltered to simplify problem (6Ib) as well. For
brevity this path will not be followed again in details, but only the main stages are recalled
here for convenience: (a) suboptimizations by an a priori choice of the fictitious initial
conditions; (b) in the case of periodic excitation, the a priori choice of the transient
suppressing ur,. Ii:; is optimaL in the sense that do not deteriorate the optimal value; (c)
time removal by recourse to minim um convex hulls r

1
in the local stress spaces and reference

to polyhedra enclosing those r 1 in the same spaces in order to transform the problem in a
fully algebraic one.

6 SHAKEDOWN ANALYSIS BY A KINEMATIC APPROACH

6.1. Admissihlc riclding cycles
The approach to be developed here is kinematic in the sense that it is based on suitably

defined, fictitious. plastic deformation processes. In classical perfect plasticity this notion
led to the theorem of Symonds and Neal (1951) and Koiter (1956), later shown to be dual
to Melan's theorem through the duality formalism of mathematical programming (Maier,
1969) for piece-wise-linear yield condition. Its extension to dynamics was established by
Corradi and Maier (1973, 1974), Extensions to associative nonlinear hardening plasticity
have been presented in Comi and Corigliano (1991) and Polizzotto et al. (1991, 1993).
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In view of the further generalization to the present nonassociative plasticity context,
the notion of admissible cycle is preliminarly revisited below and defined in two different
ways.

(a) Admissible cycle o/kind ip (in symbols P"" q,,,) over the time interval [t l , t11 will label
henceforth a fictitious yielding process in which: (i) the flow rule is associated to the yield
functions cp, i.e.

(62)

and (ii) the following relations are satisfied (the former means compatibility of the cumu­
lative plastic strains developed along the cycle) :

~I.

Lip" == I,' p,p(t)dt = CLiti,p,. ' ,

(63)

Note that, as a consequence of eqns (62) and of the convexity of cp (Section 2), Hill's
maximum principle holds for the relevant (fictitious) dissipation:

such that cp«(f*, x*) ~ O. (64)

(b) Admissible cycle 0/ kind cD (in symbols pq" qq,) over the time interval [t I' t11 will denote
a fictitious yielding process such that: (i) the flow rule is associated to the plastic potential,
I.e.

(65)

and (ii) the following equations hold:

Lipq, == J'I. pq,(t) dt = CLitiq, ,
I, f

l.

Liijq, == .' qq,(t) dt = O.
"

(66)

Similarly to (64) by virtue of (65) and of the convexity of cD (Section 2), the associated
dissipation is characterized by Hill's maximum principle:

(67)

6.2. inadaptation theorems
The word inadaptation means here the event contrary to shakedown, the lack thereof.

Proposition 14. Sufficient condition for inadaptation. The structure will not shakedown
under the given load history pet) and initial conditions "0,00, if there is an admissible
yielding cycle of kind cp, say (p,p, ii,,,), starting at t I > i, such that:

j~l= [(fE(t) + oJ' (tWp,,(t) dt > (I, D(pl'" q,,,) dt
(j J11

for all a-F(t), i.e. for any initial conditions 00, ito, and for all time instants i.

(68)
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Proof Suppose. by contradiction with the thesis. that shakedown occurs under the given
dynamic excitation P(t). Then, by virtue of Prop. 3. there exists some i and some fictitious
process with time independent X. jJ and initial conditions 00, fio (and, hence, fT == UE+fTF +jJ)
such that (43) is satisfied. By identifying these fT and Xwith u* and x* in the maximum
property (64) of an admissible cycle of kind r.p and by integrating (64) over the time for
t l > i, we obtain the inequality:

f\fT1p",-xT
il",)dt ~ "D(p""il,,)dt.

",'I "'1

(69)

Owing to the peculiar features (63) of the admissible yielding cycle and to the virtual work
principle:

(70)

Through eqns (70). inequality (69) becomes:

['(UI(t)+fT1(t))/p"o(t)dt ~ [" D(Pm,il,,)dt
"r l "II

(71 )

which holds for any admissible cycle of kind (p with t I ?- i and for the particular values d F
,

i which derive from the shakedown necessary condition.
Ineq uality (71) is in contradiction with the hypothesis expressed by inequality (68),

which holds for at least one admissible cycle of kind r.p and for any fTl. i. (q.e.d.)

Proposition 15. Necessary condition/c)r inadaptotion. If the structure does not shakedown
under the given loading history P(t) and initial conditions uo, uo• then there is some
admissible yielding cycle of kind cD. say (Pl]" ija,). starting at t I > i. such that:

~ j~l" [UC (t) + fTl (t)]'P'I' (I) d t > I"; D(Pa,. il'I') dt
'1 .. ,I!

(72)

for all dl(l). i.e. for any initial conditions 0". 6". for any time instant i and scalar variable
~ > 1.

Proposition 15 can be restated. equivalently through formal logic, as a sufficient
condition for shakedown in the way which follows. Note in passing that, similarly, Prop.
14 might be reformulated as a necessary condition for shakedown.

Proposition 16. Sulficiellt conditioll jor shaked(iIIll. Shakedown will occur in the structure
under the given loading history P( t) and initial conditions Un, UO, if there exist a fictitious
free vibration response al

• a time instant t. a scalar variable ~ > I. such that:

~j~1 [uL(t)+fTI(t)]'P'I,(I)dt ~ J~'lj(pa"il'I,)dt
'I 'I

for all admissible yielding cycles of kind cD starting at II> t.

(73)

Proof It is proved below that condition (73) is a sufficient condition for SO by showing
that the safety factor ':I., is not less than I under the given loading history P(t) and initial
conditions Un. uo. To this purpose, consider the maximization problem (49) which provides
a lower bound fJ on 'X,. where fTl(t) and i are the a priori specified quantities tF(t), t,
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respectively, which appear in condition (73). In order to prove the proposition. we rein­
troduce the scalar factor co which appeared in the shakedown sufficient condition (42) (see
also the remarks after Proposition 6) and assign to it the value ~ > 1 of the hypothesis (73).
With this modification, maximization problem (49) is rewritten as:

'i, ? 'is ? p" (IV, r~) == max: 'l.) subject to:
'i·fI·,!

The Lagrangian functional of the above optimization problem reads:

(74a)

(74b)

L = -'i+ [.u1[(]>(~('l.O'L(t)+;P(t)+jJ),~:V-B+d]dT+flvTCTpdT, (75)
"I 1

where .u and v are vectors of Lagrange multipliers and d denotes a vector of positive slack
variables which transforms the ineq uality constraint into an equality. The Euler-Lagrange
optimality conditions for problem (74) can be computed as follows from functional (75),
denoting for brevity by fJ the sum 'iO'E(t) +;V (t) +p:

ep =0

<D( ~a. ~xJ :( B, <D1.u = 0, .u? o.

Notice now that the following vectors:

(76a)

(76b)

(76c)

(76d)

(76eJ,g)

(77)

define an admissible yielding cycle of kind <D in the time interval [t I = t, f 2 = f]. In fact
variables P<l>' q<l> satisfy the flow rule associated with functions <D (77), (76e--g) and relations
(76b,c), which coincide with (66a,b) provided that v is interpreted as a vector of dis­
placement rates.

Consider now the above defined particular admissible yielding cycle of kind <D defined
by (77). In view of what precedes the inequality (73) of the hypothesis must hold also for
the above cycle, namely:

(78)

where ;jE(t) = O'E(t) + ;j)-(t) and a(t) = ('l.O'£(t) +;j~ (t) + jJ). Making use ofconditions (76b,c)
and noting that p, Xare time independent and that p is self-equilibrated, the inequality (78)
can hc transformed into the following form:

SAS 32-21-G
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ft ~O"l(t) rpq, dr ~ :x f~ ~O"E(t)Tpq, dr.
." I ~ I

(79)

As a consequence of eqns (79) and (76a) it follows that :x is no less than one. Since the
above Euler-Lagrange relations of the maximization problem (74) are always satisfied by
the optimal solution. one can write the following chain of inequalities:

(80)

The inequalities (80) state that the shakedown limit :x, for the structure under the given
loading history P(t) and initial conditions "0. Un is no less than one. Hence shakedown is
ensured and Proposition 16 is proved. Owing to the eq uivalence between Propositions 15
and 16, the latter implies the former to be satisfied. (q.e.d.).

It is worth noting that the scalar ~ disappears from the argument of the gradient
(""<1>\('0" and cl<l>T('X in eqns (76) and (77) if the plastic potentials <I> are assumed positively
homogeneous of order I. according to a frequently adopted weak hypothesis.

7 CONCLUSIONS

In what precedes reference was made to material behaviour described by generally
nonassociative elastic plastic (time-independent) constitutive laws which exhibit nonlinear
hardening governed by internal variables occurring in pairs (according to the so-called
generalized standard and non-standard elastoplasticity).

A notion crucial to the purposes of the present paper is the reduced yield domain
proposed in Maier's earlier shakedown theory in nonassociative perfect plasticity.

Semidiscretization (in space) has been adopted by multifield finite element modeling,
so that vectors of generalized variables (in Prager's sense, occurring in pairs) govern the
evolution of the discretized solid or structure considered.

On this basis and in the assumed absence of geometric effects, the following
contributions have been presented to the shakedown theory of elastoplastic structural
dynamics.

(a) A further extension. in terms of more general constitutive laws, of the static shakedown
theorem of Melan. extended to dynamics by Ceradini. The present extension, studied as
for the quasi-static context in a separate paper, materializes in distinct sufficient and
necessary shakedown conditions, which yield lower and upper bounds on the shakedown
load factor.
(b) A further parallel generalization of the kinematic Koiter's theorem and of its earlier
extension to dynamics by Corradi and Maier. The present results consist of distinct sufficient
and necessary conditions for inadaptation.
(c) Upper bounds on various post-shakedown quantities, as extended versions of bounding
inequalities supposed to be most promising among those available in the literature for
narrower constitutive contexts.
(d) Both the optimization of the upper bounds on history-dependent quantities and the
computation of bounds on the shakedown limits are shown to be amenable to mathematical
programming problems.

4('/.;I/(ill/"(/'/('I//('I/I.I This study was carried out in the frame ofa research project sponsored by the Italian Ministry
for Universities and Scientific Research (MURST. 40%). The author S. Pyeko acknowledges with gratitude the
support of the Exchange Program between the National Research Council of Italy (CNR) and the Polish Academy
of Sciences IPA N )
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